7th European Thermal-Sciences Conference (Eurotherm2016) IOP Publishing
Journal of Physics: Conference Series 745 (2016) 032090 doi:10.1088/1742-6596/745/3/032090

An Inverse Method for Simultaneous Estimation of
Thermal Properties of Orthotropic Materials using
Gaussian Process Regression

K. S. Reddy!, S. Somasundharam

Heat Trasfer and Thermal Power Laboratory, Department of Mechanical Engineering,
Indian Institute of Technology Madras, Chennai-600 036, India

E-mail: ksreddy.iitm.ac.in

Abstract. In this work, inverse heat conduction problem (IHCP) involving the simultaneous
estimation of principal thermal conductivities (Kkzsz,kyy,k-») and specific heat capacity of
orthotropic materials is solved by using surrogate forward model. Uniformly distributed
random samples for each unknown parameter is generated from the prior knowledge about
these parameters and Finite Volume Method (FVM) is employed to solve the forward problem
for temperature distribution with space and time. A supervised machine learning technique-
Gaussian Process Regression (GPR) is used to construct the surrogate forward model with
the available temperature solution and randomly generated unknown parameter data. The
statistical and machine learning toolbox available in MATLAB R2015b is used for this purpose.
The robustness of the surrogate model constructed using GPR is examined by carrying out the
parameter estimation for 100 new randomly generated test samples at a measurement error of
+0.3K. The temperature measurement is obtained by adding random noise with the mean at
zero and known standard deviation (o = 0.1) to the FVM solution of the forward problem. The
test results show that Mean Percentage Deviation (MPD) of all test samples for all parameters
is < 10 %.

1. Introduction

Parameter estimation using inverse method is widely practised in almost all engineering
disciplines where direct measurement of the parameters is not feasible. For example in inverse
heat conduction problems (IHCP) temperature measurements are used to estimate/identify
boundary heat fluxes, thermo-physical properties, location and strength of heat sources|[l].
However, inverse problems are ill-posed in nature. That is, a small measurement error in the
effect (temperature in the case of IHCP) leads to the different/erroneous cause and sometimes
the inverse problem may not be solvable at all. Therefore, the successful solution of any inverse
problem relies on the optimal design of experimental parameters that enables high-quality
measurement of effect, accurate modelling and solution of the forward problem that closely
mimics the experimental configuration, suitable method for the solution of inverse problem
that is robust enough for tackling ill-posedness arising due to measurement errors and multiple
parameters.
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In literature, non-linear least square algorithms (with regularization scheme) such as
Levenberg-Marquardt[2], Conjugate gradient[3] are used to solve the inverse problem. The major
setback with these methods is that when multiple parameters are estimated simultaneously/
when the parameters are correlated, the solution converges to another feasible solution (local
optimum). To overcome this, stochastic search techniques such as Genetic Algorithm[4] may
be used to solve the inverse problem. Recently, methods based on statistical inversion such as
Bayesian inference is used extensively due to its ability to incorporate prior beliefs about the
parameter and measurement uncertainty in the inverse solution. However in this method, a large
number of samples are required to approximate the posterior distribution with the sampling
distribution and hence the forward problem has to be repeatedly solved for a large number
of times. Sampling algorithms such as Markov Chain Monte-Carlo(MCMC), Gibbs sampler
may be used to sample through the posterior distribution since the analytic way of calculating
the expectations is difficult for multi-parameter space. In some cases (e.g., multi-parameter
estimation), where a single solution of the forward problem alone requires huge computational
time, an inverse solution using Bayesian/deterministic search methods takes months together.
Also, in multi-parameter estimation at high measurement uncertainties efficient hybrid sampling
techniques are required to sample through a posterior distribution[5], which again increases
the computational time required for the solution of the inverse problem. In order to address
these issues, surrogate forward models are used for the solution of the inverse problem. In the
literature, the surrogate models are categorized into three different classes: data-fit models,
reduced-order models and hierarchical models. A brief discussion about these models are
presented in [6].

In this work, a methodology for solving inverse problem using surrogate model (data-fit
model) is demonstrated. An inverse heat conduction problem is considered for demonstration in
which five parameters say, principal thermal conductivity components of orthotropic materials,
its specific heat capacity and heat transfer coefficient are identified simultaneously. The
robustness of inverse parameter estimation with surrogate forward model constructed using
GPR is examined by retrieving the parameters from the forward problem with noisy temperature
measurement for 100 new test samples.

2. Definition of forward problem

The governing equation for heat conduction in a cuboid orthotropic material with constant heat
flux boundary condition at one face and convection boundary condition on the remaining faces
is regarded as the forward problem. Mathematically the forward problem is given by,

o*T 0*T o*T or | a a b b
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subjected to the following initial and boundary conditions.
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and a,b and c¢ are the corresponding lengths (m) of the cuboid in z,y and z directions
respectively. Similarly kyz, kyy and k., are constant thermal conductivity (W/mK) (independent
of temperature) components along x,y and z directions respectively. Also p and C), are density
(kg/m3) and specific heat capacity (J/kgK) respectively.

The boundary condition depicts that one face (z = 0 plane) is subjected to a localized heat
flux of magnitude go until time ¢y on the area enclosed by —3 <z < 7, —g <y< g in I'y and
the heat that is being conducted within the solid domain under consideration is convected to the
surrounding medium with heat transfer coefficient h (W/m?K) and temperature T, through

the areas enclosed by the regions I's to I's.

3. Gaussian Process Regression

Gaussian Process Regression (GPR) can be simply thought of as an ordinary Bayesian regression
with an infinite dimensional parameter space of unknown nonlinear regression functions. Thus,
the unknown nonlinear regression function is regarded as the unknown parameter, i.e., the
random functions to be estimated and its prior distribution also needs to be specified. A specific
probability distribution is considered for random functions and in general a multivariate standard
normal distribution is most widely used|[8].

Let Z € R™*" denotes a matrix, whose each column vectors are randomly generated samples
for each unknown parameter. Here r=>5, since there are five unknown parameters and let
X € R™ ™ denotes a matrix whose elements are simulated temperature (solution of forward
problem) with Z as input. i.e, T(¢,z,y,2). Let D = (X,Z) denotes a data matrix available for
GPR training.

The likelihood of D for a standard, one-dimensional, zero-mean GPR is given by[7],

p(D|0) = N (Z|0n, Ap + 03 1y) ()

2

) is the vector of all hyper-parameters.

where 0, € R™*! is the zero mean vector, § = (O'J%, 012, o
0]20 and ‘712 > 0 are the parameters of covariance function, o2 is the noise level (in this work, it is

assumed that 02=0) and A, € R"*" is the covariance matrix. In this work, Squared Exponential
(SE) covariance function is used and it is given by:

2
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where UJ% and 012 are signal standard deviation and length scales respectively. Refer[8] for GPR
training and prediction method for newly observed input data, X* € R*™

4. Results and Discussion

In this section, the results of parameter estimation using surrogate forward model is presented.
As mentioned earlier, GPR training is used to construct the surrogate model. The range of
unknown thermal properties in their respective units chosen for training are as follows:

0.1 < kyr <10, 01 <ky, <2, 0.1<k,, <2,
1200 < C, <1800, 5<h <18
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The interval for all these parameters are usually chosen from the prior knowledge about the
parameters. An arbitrary size of uniformly distributed random sample is generated for each
unknown parameter and the forward problem is solved for temperature distribution 7'(¢, x,y, z)
using Finite Volume Method (FVM) with these samples as input. The set of algebraic equations
obtained by applying energy balance to each control volume is solved using Gauss-Seidel iterative
technique. The heating time (tg) and final time of experiment (¢) is decided after studying the
determinant of Fisher information matrix? for a fictitious but realistic orthotropic material® and
from the results of such numerical test, the heating and final time of experiment is chosen to be
1080 and 1620 seconds respectively. In this work, all temperature solutions are considered only
at z=c plane, which enables the use of non-intrusive method of temperature measurements

in real time application. Now, with the simulated data D = (Z,X) a surrogate forward
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Figure 1. Sample vs MPD at measurement error==0.03K.

model is constructed using GPR[8]. MATLAB R2015b is used for training and predicting the
response for new input data X*. As mentioned earlier, Squared Exponential (SE) covariance
function is chosen to represent the similarity kernel matrix for input data. The trained surrogate
forward model is then used to estimate the unknown parameters with the simulated experimental
temperatures as input. A total of 100 new samples for each parameter is considered for testing
the trained surrogate model. The Mean of Percentage Deviation from actual value (MPD) for
each unknown parameter is calculated using the equation (7).

100

1 Iyl — 'l
MPD = —— West — 91 4
100 izl{ y' X100 @)

In equation (7), yest and y denotes the estimated parameter using trained surrogate model and
actual parameter respectively. Figures 1 and 2 show the variation of MPD with sample size at
measurement error of £0.03K and +0.3K respectively. As expected, the MPD for all parameters
decreases with the increase in sample size. Therefore, a sample size of 3500 is considered in the
further analysis, since the cumulative MPD of all parameters is less in this case and also with

2 F=J7J, where J is the sensitivity matrix for the unknown parameters. Refer[1] for the definition of sensitivity
matrix

3 kaa=bW/mK, kyy=0.7W/mK, k..=0.6W/mK, C,=1500J /kgK, h=10W/m>K
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Figure 2. Sample vs MPD at measurement error=+40.3K.

further increase in sample size there is no significant change in MPD. From figures 1 and 2, it
is clear that the MPD for all parameters is less at measurement error +0.03K than at +0.3K
irrespective of the sample size. However, measuring temperature at this level of uncertainty is

extremely difficult in real time experiments and hence only the results of estimation at £0.3K
is presented in the following sections.
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Figure 3. Estimated k;y (W/mK) for 100 test samples. (shaded region includes the estimated
samples with % of deviation > 10)

The results of parameter estimation for 100 new test samples using surrogate model for
each unknown parameter at measurement uncertainty of +0.3K is shown in figures 3 to 7
respectively. The percentage of deviation from the actual value for all 100 test samples is
less than 10% in case of C}, and h which is clearly visible in figures 6 and 7. The number
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Figure 4. Estimated k,, (W/mK) for 100 test samples. (shaded region includes the estimated
samples with % of deviation > 10)
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Figure 5. Estimated k., (W/mK) for 100 test samples. (shaded region includes the estimated
samples with % of deviation > 10)

of samples for which the percentage of deviation exceeds 10% is more or less equal for both
kye and kyy (figs. 3 and 4) whereas, for k., nearly 15 samples exceeds 10% deviation (figs.
5). Though the deviation from the actual value for some samples are greater than 10%, the
confidence internal encloses the actual parameter value for all parameters for all test samples.
The estimation of parameters for samples falling in the interval 0.1< &k, <0.5, 0.1< ky,, <0.35
and 0.1< k., <0.7, is observed to frequently exceed 10% of deviation from the actual value.



7th European Thermal-Sciences Conference (Eurotherm2016)

IOP Publishing

Journal of Physics: Conference Series 745 (2016) 032090

doi:10.1088/1742-6596/745/3/032090

2000 T T T T T 10
%n 1500 ¥ H -
! ﬁ s
O™ { ¥ { }
1000 | e actual x estimated I confidence interval -
1 L L 1 I e ————— O
20 40 60 80 100
Test Sample No.
Figure 6. Estimated C}, (J/kgK) for 100 test samples.
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Figure 7. Estimated h (W/m?2K) for 100 test samples.

Therefore, one combination of parameters?®, that falls in this interval is again estimated, but using
Levenberg-Marquardt algorithm with same set of experimental parameters (¢, 7, ¢, number of
sensors). From this numerical study, it is found that the percentage of deviation for k., ky,, and
k.. is greater than 10% even with deterministic search®, indicating that the sensitivity of these
properties with respect to experimental parameters are less and with the presence of random
temperature measurement error, the inverse problem becomes more ill-posed leading to erroneous
solution. Therefore, in conclusion deciding the optimum choice of experimental parameters

1 kpr=0.474W /mK, k,,=0.162W /mK, k..=0.434W/mK, C,=1693J/kgK, h=6.6W/m>K
5 however, if the initial guess is close to the actual parameter, then the percentage of deviation is < 10%

% of error

% of error
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for desired range of unknown parameters may reduce the estimation error. Alternatively, the
present GPR trained surrogate forward model can be effectively used for estimating thermal
properties falling in the range 0.5< kg, <10W/mK, 0.35< £y, <2W/mK, 0.7 < k., <2W/mK,
1200< C, <1800J /kgK and 5< h <18W/m?K.

In the present work, the effect of parameters of the covariance function (signal standard
deviation and length scale) on parameter estimation are not studied while training the data.
Therefore, there is scope for the future work to optimize these parameters. Also, constant
length scale is used in the present work for training such large data, whereas in the future
different length scales may be used for training large data sets which significantly reduce the
computational effort required for training.

5. Conclusion

In this work, an inverse heat conduction problem was solved using surrogate forward model
(data-fit model). A supervised machine learning process-Gaussian Process Regression (GPR)
was used to construct the surrogate forward model from the simulated input and output data.
The thermal properties of orthotropic materials were estimated simultaneously using the trained
surrogate model. The robustness of the model in estimating the parameters was studied by
carrying out the estimation for 100 new test samples and it was found that the Mean Percentage
Deviation were less than 10% for all parameters. However, the percentage of deviation for some
samples of parameters in the range 0.1< k;, <0.5, 0.1< £y, <0.35 and 0.1< k., <0.7 were more
than 10% and it was found that, by proper choice of experimental parameters, this estimation
error could be reduced while estimating the parameters in this range. Alternatively, the present
GPR trained surrogate forward model could be effectively used for estimating thermal properties
falling in the ranges of 0.5< kg, <10 W/mK, 0.35< ky, <2 W/mK, 0.7 < k., <2 W/mK,
1200< C), <1800 J/kgK and 5< h <18 W /m?K thus enabling to estimate wide range of thermal
properties of orthotropic materials.
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