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Abstract. In the case of laminar flow, once all property variations are included, properly 
modelled and correctly solved a good agreement with experimental data means that numerical 
model has been validated. However, for turbulent flows the difference between experimental 
and numerical results could be the effect of an inadequate model or the use of inappropriate 
boundary conditions. A better agreement with the experiment, might be obtained by 
“improving” the model, or by obtaining “better” boundary conditions or a combination of the 
two. This issue is explored in the paper using the example of LES of buoyancy-driven flow in a 
tall rectangular cavity. Based on comparison with experimental data, it is shown that 
introducing heat losses through the top wall in simulations brings the numerical results closer 
to the experimental data. However, an improved subgrid model with all non-isothermal walls 
being adiabatic also brings numerical results and experimental data closer, at least near the hot 
wall. Therefore, experimental results cannot be used to validate numerical model of turbulent 
flows with heat transfer unless thermal boundary conditions can be established with reasonable 
accuracy. 

1. Introduction
Since many problems acquired in computational fluid dynamics (CFD) require significant 
computational resources, one of the earliest decisions is how much the numerical model can be 
simplified to produce results that predict “reality” with sufficient “accuracy”. One aspect of accuracy 
is routinely overcome by “grid refinement”, to demonstrate that, at least as far as the numerical 
accuracy is concerned, the choice of the mesh and time step in the case of unsteady flow solutions, is 
based on the firm ground.  It remains however, to demonstrate that the proposed model does predict 
results which are in “reasonable” agreement with numerical solutions of similar, previously solved 
problems, or, if available, experimental results. This is the validation problem.  

In fluid mechanics and heat transfer the only way to determine the validity of a theory is to 
compare it with a “better” theory [1]. It should always be remembered that numerical solutions are 
approximate solutions and in the context of CFD a “better” theory is a solution which is based on 
fewer assumptions, or is in some ways more accurate. Unfortunately, in CFD “better solutions” are 
rarely available so that the agreement between a numerical solution and experimental data is usually 
considered as the “gold standard” and is usually accepted as the best indication that that the CFD 
model is predicting “correctly”. 
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In most cases, the numerical model is simplified in two ways. One consists of the fluid flow 
equations used and the other is the system to be studied. For example, consider the apparently simple 
problem of the laminar flow in a two-dimensional differentially heated cavity with isothermal hot and 
cold walls and the top and bottom walls adiabatic. Firstly, a two-dimensional apparatus is impossible 
to build, but it could be argued that the flow on the centre vertical plane of the cavity might be 
acceptable as the flow to be matched.  Secondly it is very difficult to physically produce absolutely 
“isothermal” walls and, finally, the so called adiabatic walls are usually characterised as “highly 
insulated,” but obviously not adiabatic. The physical difference between the experimental “reality” 
and the numerical assumptions of isothermal and adiabatic boundaries are usually disregarded as being 
“small” in the interest of obtaining numerical solutions.  

The simplest model is the Boussinesq Approximation in which all properties are considered 
constant except for the density in the buoyancy term of the momentum equation and radiative 
exchanges are completely neglected. When this model is used at low Rayleigh numbers with a linear 
variation in the density as a function of temperature, on the problem mentioned above, the centre of 
the resulting flow cell must occur at the centre of the cavity and the solution is anti-symmetric about 
the major diagonals of the cavity. Morrison and Tran [2] found experimentally that the centre of the 
cell moved towards the hot wall and up. They claimed that the reason for this drift was that the 
variation of transport properties with temperature was not taken into account in numerical models 
using the Boussinesq approximation.  

When the variation of the transport properties was taken into account in the numerical model, 
Leonardi [3] found that the centre of the cell moved towards the cold wall and down, exactly the 
opposite result from that obtained by Morrison and Tran. Since there was no other variations that 
could be introduced to the equations, the only remaining difference had to be the boundary conditions 
used in the numerical solution. The insulation on the top boundary of the apparatus was then included 
in the model together with an assumed temperature in the laboratory and a correlation used for the 
evaluation of the Biot number on the surface. Now, the centre of the cell almost exactly matched the 
position found by Morrison and Tran [2]. This then, was proof that heat transfer through what has 
often been termed “inactive” walls can play a significant role and cannot be neglected. Similar 
problems of even greater complexity have been demonstrated by Leonardi et al. [3] in three-
dimensional thermally driven flows. 

In our experience when validation is discussed in the literature, the equations and the numerical 
procedures used to model the flow and heat transfer are the processes to be validated. In the case of the 
laminar flow discussed above, once all property variations had been included, properly modelled and 
correctly solved, no “better theory” can be found. However, unless a direct numerical simulation is 
employed (a computationally very expensive approach), whenever turbulent flows are studied, a 
model is required to overcome the closure problem. As a result, the validation of the CFD code 
becomes more difficult.  

The differences between experimental and numerical results could be the effect of an inadequate 
model or the use of inappropriate boundary conditions. The “correct solution”, that is indicated by the 
experiment, might be obtained by “improving” the model, or by obtaining “better” boundary 
conditions or a combination of the two. The question then arises as to whether the validation can 
identify the “appropriate model” to be used for the solution of such problems. This issue is explored in 
the paper based on the example of LES of buoyancy-driven flow in a tall rectangular cavity. 

2. Computational model

2.1 Governing Equations 
The computational model used in this study is based on the conservation equations for variable-
property Newtonian fluids. To adequately model the transitional flow structures, a large-eddy 
simulation (LES) approach is adopted, in which the large-scale eddies are resolved explicitly and the 
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small-scale eddies are filtered and modelled. To account for the density variation within the flow, 

Favre-averaging is utilized, viz. ( ), ( , ) /t tϕ ρϕ ρ=x x , where ( ), tϕ x  is an any variable which is a

function of time and space, ρ  is the filtered density. Following from this, the density-based Favre-
filtered mass, momentum, and energy conservation equations in Cartesian form can be written as:

(1) 
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In Eqs. (1) – (3) refρ  is the reference density,  is the filtered velocity vector,  is the filtered 

temperature, µ is the dynamic viscosity, Cp is the specific heat of constant pressure and k is the 
thermal conductivity. In the present investigation, the dynamic viscosity is evaluated using the 
Sutherland equation [4] with the Sutherland constant C for air taken to be 120. In Eq. (3), the specific 
heat of constant pressure pC  is taken to be a polynomial function of temperature similarly to [10], and 

the thermal conductivity k is evaluated using k = μ Cp / Pr,
 
in which Pr is the Prandtl number of air. 

In LES, the effect of small-scale eddies is taken into account in the conservation equations via the 
subgrid-scale (SGS) stress tensor ijM  as shown in Eq. (2) and the flux vector q  in Eq. (3). Mij is 

modelled as 

(5)

where tμ  is the SGS viscosity,  and 
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 . Since natural convection in a

cavity can be considered as a weakly compressible flow,  may be ignored [5]. The SGS thermal 

flux vector q  is typically modelled using the SGS Prandtl number, Prt , based on the formulation of 

Eidson [6] which given the components of q  as 

(6)

The closure of the equations Eq. 5 and 6 requires a model for the SGS viscosity tμ . In the present 

work, it is modelled using the Vreman [7] formulation (VM), in which μt = ρ Cv Πg, where 
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 is a 3x3 matrix of velocity derivatives, 2Δij m mi mjβ α α= ,

11 22 12 12 11 33 13 13 22 33 23 23Bβ β β β β β β β β β β β β= − + − + − , andΔm  is the filter width of subgrid in the 

direction m. This SGS model is preferable to the Smagorinsky model [8] as the latter has been found 
to be too dissipative for simulations of wall-bounded shear flows [9]. In contrast to the Smagorinsky 
model, the Vreman model has been found to predict zero dissipation in regions in which the flow is 
laminar, hence giving more accurate predictions of the location of transition [10]. 

Although VM has been shown to be successful in predicting many turbulent and transitional flows 
[11], its model coefficient was found to be insufficient to adapt to the flow. You and Moin [12] 
utilized the energy equation on the basis of internal energy to derive an expression for Prsgs. Following 
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this approach, the present co-workers [13] adapted a “global equilibrium” dynamic procedure into the 
Vreman model (DVME) for the flows at low Mach numbers in which compressibility effects due to 
propagation of acoustic waves may be ignored. It was demonstrated that this formulation is applicable 
to correctly capture the location of transition in a boundary layer in natural convective flows.  Details 
of this formulation can be found  in [13]. 

2.2 Numerical Methodology 
Finite volume method (FVM) is utilized to discretize the filtered transport equations on a 

collocated grid. The convective terms are approximated using 4th-order central differencing scheme 
whereas the diffusion terms as well as other spatial derivatives are approximated using the 2nd-order 
central differencing scheme. The numerical solution is advanced in time using an explicit two-step 
predictor-corrector approach, which involves a 2nd-order Adams-Bashforth time integration scheme 
for the predictor stage and a 2nd-order quasi Crank-Nicolson integration scheme for the corrector 
stage. Pressure correction steps which are incorporated in both the predictor and corrector stages 
involve the inversion of pressure correction Poisson equations and are solved by means of Krylov 
methods. Detailed derivation and implementation of the numerical method in the in-house code can be 
found in Lau et al. [10]. In all cases, simulations were carried out for approximately 25 000 time steps 
before sampling of the turbulent data was begun. Stability of the numerical algorithm was ensured by 
employing a maximum Courant–Friedrichs–Lewy (CFL) criterion of 0.35 in all simulations with a 
maximum time step of 0.005s. 

2.3 Computational domain and boundary conditions 
The configuration studied is a differentially heated enclosed rectangular cavity [14, 15] used in the 

experimental study by King [15]. The dimensions of the cavity are width (W) × height (H) × depth 
(D) are 0.5 m × 2.5 m × 1.0 m. The temperature difference between the hot and cold walls was 45.8°C, 
giving Ra = 4.56 × 1010. Since silicon heaters were used to maintain the temperatures of the hot and 
cold walls, it is reasonable to assume that these temperatures were constant during the experiment. All 
other walls were insulated with expanded polystyrene. A more detailed description of the experimental 
apparatus can be found King’s PhD thesis [15]. 

The 3-D computational domain used to replicate this experiment in the present study together with 
the frame of reference is shown in figure 1(a). A non-uniform mesh has been adopted with a finer 
mesh positioned in near-wall regions to capture accurately the boundary layer physics. Three grid 
resolutions were tested in the present study. It was shown that the coarse mesh (75, 163, 78) was 
sufficient to resolve the viscous sublayer of the turbulent boundary layer as the first mesh point is 

located within x+ < 1.1. The differences between the time averaged numerical results obtained using
the medium and fine grids were found to be small. Thus in the following, numerical results are 
presented for the fine mesh.  

For the velocities no-slip boundary condition was applied at all solid walls. A Dirichlet boundary 
condition was applied for the temperature at the isothermal walls with the hot wall, TH = 350.35 K and 
the cold wall, TC = 304.55 K. In the case of well-insulated walls all solid walls were assumed as being 
adiabatic, so that the Neumann boundary condition, ∂T/∂n = 0, in which n is normal to a wall, was 
applied at the top, bottom and side walls. 

In order to investigate the effect of heat loss through the top wall on the nature of transition onset in 
the flow and thermal boundary layers, a 1-D approach was adopted to estimate the heat loss through 
the top wall of the cavity. The thickness of the expanded polystyrene employed by King [15] was 
0.205 m, and its thermal conductivity was assumed  k

s
= 0.033 W/mK. The heat transfer rate was 

calculated at every time step from the internal wall temperature of the cavity ,w iT  and the ambient 

temperature around the apparatus, by writing energy balance equations for fluid, solid and ambient 
conditions: k ∂T/∂y|cavity = ks ∂T/∂y|solid, and ks ∂T/∂y|solid = hair (Tw,o-Tamb), as illustrated on figure 1(b).  
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    (a)                                                                  (b)        
  Figure 1. (a) Computational domain,  (b) The heat loss model at the top wall (polystyrene). 

The ambient temperature was assumed 288.15KambT = , and two values of the heat external 

convective heat transfer coefficients of hair = 10 W/(m2 K) and hair = 15 W/(m2 K)  representing typical 
values for natural convection were assumed. 

3. Results and discussion
The mean temperature and vertical velocity profiles in the central x–y plane at two locations along the 
height of the cavity are shown in figures 2(a, b).  As might be seen in figure 2(a) at mid-height, 
Y/H=0.497, in the case of the top wall being adiabatic the DVME model is in better agreement with 
the experiment than the non-dynamic Vreman model (VM) with the discrepancy in the temperature 
values reduced by 7% on the average. However, when heat losses from the top wall are taken into 
account, even better agreement with experimental results was obtained with average discrepancy 
between experimental and numerical temperature values in the middle of the cavity reduced to 43% of 
the VM discrepancy. The difference between using h=10 and 15 W/(m2 K) is insignificant. For the 
velocity values, figure 2(b), the difference between experimental data and numerical results is reduced 
by 36% using DVME instead of VM with an adiabatic boundary conditions, whereas the discrepancy 
is halved when VM is used with a non-adiabatic top wall for both heat transfer coefficients. 

Near the top of the cavity, Y/H=0.765, there is less than 1% change on the average between DVME 
and VM results. The non-adiabatic VM results for h=15 W/ m2 K only slightly improve, 9%, the 
numerical results for the temperature field, whilst with h=10 W/ m2 K a more significant improvement 
of 27% occurs. The differences in the velocity profiles near the top of the cavity are similar to each 
other, with the non-adiabatic boundary conditions yielding results slightly closer to the experimental 
data.  

Figure 2(c) displays the time-averaged Nusselt number distribution along both the hot and cold 
walls at the centreline i.e. z/D = 0.5 of the cavity. In the present study, the Nusselt number is computed 
as Nu = (∂T/∂x)wall·H / (TH – TC). It can be seen that the introduction of heat loss at the top wall 
improves prediction of the Nusselt number considerably including the shift in the gradient of the 
profile which is often used to indicate flow transition, at about y/H = 0.4. This is consistent with the 
results presented in figure 3, 4, in which heat loss introduced at the top wall has been found to enhance 
the turbulent activity and flow mixing in the cavity.  From figure 2(c) it also can be seen that DVME 
better predicts transition in natural convective boundary layer than VM. 
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 (a)                             (b)  (c) 

Figure 2. (a-b) Comparison of the time-averaged (a) temperature profiles and (b) v-velocity profiles 
with experimental data at the central plane z/D = 0.5 (c) Time-averaged Nusselt number distribution 
along the height of the cavity at z/D = 0.5 on the cold wall (top) and cold wall (bottom).  

 A comparison of the evolution of rms v-velocity fluctuations 2'v (figure 3(a)) and of the vertical 

turbulent heat flux ' 'v T  (figure 3(b)) along the height of the cavity at the central x-y plane is presented 
between numerical results and experimental data in figure 3. It is clear that the fluctuations at the cold 
wall near the top of the cavity are considerably under-predicted when of either VM and DVME is used 
with an adiabatic top wall, as indicated by peaks of the profiles at y/H = 0.765 as well as by the spread 
of the profiles which are not well captured in these cases. On the contrary, both cases with non-
adiabatic wall give reasonably good predictions of the turbulent quantities at this location. This is 
consistent with the results for the λ2 criterion presented in figure 4. The vortex cores visualised by 
using this criterion clearly indicate the differences between the various models.  

It is clear the VM subgrid model, figure 4(a), generates greater levels of turbulence than the DVME 
model shown in figure 4(b). As discussed above, this leads to better agreement with experimental 
results on the hot wall with the DVME model than with the VM model. However, both models 
perform poorly on the cold wall when compared with experimental results.  Part for the reason for the 
poor performance of the two models is the level relaminarisation of the flow on the on the top wall, 
with both models apparently having too much damping. As may be seen in comparing figure 4(c) with 
figures 4(a) and 4(b), the damping of fluctuations is on the top wall is reduced when heat losses are 
included in the VM model, but the level of damping is dependent on the heat transfer through the top 
wall as show in figures 4(c) and 4(d). In both these figures the transition point is closer to the corner 
than in case VM and agreement with experiment is better, though by no means perfect. 
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As would have been expected the numerical results are dependent on both the model used and the 
boundary conditions. Since natural convection is driven by temperature differences, it is well known 
that seemingly small differences in boundary conditions can result in significantly differing flows. In 
this particular case, the introduction of heat transfer through the top boundary increases agreement 
with experimental results of the VM model to a greater extent than changing the model to DVME. The 
question now arises, unless the experimental boundary conditions are sufficiently well known, can one 
subgrid model be said to be better than another when the numerical solutions are compared with 
experimental measurements? This means that experimental data needs to be used with caution in 
evaluating the performance of a numerical scheme.  

 
                                                (a)                                                             (b) 

Figure 3. Comparison of the (a) rms v-velocity fluctuations and (b) of the 
vertical turbulent flux with experimental data at the central plane z/D = 0.5 
 

  
(a)                                  (b)                                  (c)                                  (d) 

Figure 4. 3-D isosurfaces of λ2 at the z/D = 0.5 plane colored by T for cases (a)VM, (b) DVME, 
(c) VM10,  (d) VM15. 
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3. Conclusion
Comparison of CFD results with experiment is usually used as the means of validating the numerical 
model for velocity and temperature fields of the fluid. It is shown that this approach is correct for 
laminar flows calculated with all properties variable. The cause for differences between numerical and 
experimental results can only be the boundary conditions. However, the validation of turbulence 
models is more complex. It is shown that the agreement between numerical models and experimental 
date can be improved by employing a “better” numerical model or more realistic boundary conditions. 
Unless the “correct” thermal boundary conditions are employed it cannot be said that the CFD model 
has been validated even if the numerical and experimental results agree exactly. It follows that if 
experimental results be used for the validation of CFD codes involving heat transfer in turbulent flows, 
sufficient information about the experiment must be present to allow a reasonable evaluation of the 
boundary conditions or these must be given.  
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