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Abstract. The particle filter methods have been widely used to solve inverse problems with 

sequential Bayesian inference in dynamic models, simultaneously estimating sequential state 

variables and fixed model parameters. This methods are an approximation of sequences of 

probability distributions of interest, that using a large set of random samples, with presence 

uncertainties in the model, measurements and parameters. In this paper the main focus is the 

solution combined parameters and state estimation in the radiofrequency hyperthermia with 

nanoparticles in a complex domain. This domain contains different tissues like muscle, 

pancreas, lungs, small intestine and a tumor which is loaded iron oxide nanoparticles. The 

results indicated that excellent agreements between estimated and exact value are obtained. 

1. Introduction 

The particle filter methods which became widely used to solve inverse problems of sequential 

Bayesian inference in dynamic models are of great interest for different practical applications. In these 

applications, the available measured data  are used together with prior knowledge about the physical 

phenomena and the measuring devices, in order to sequentially produce estimates of the desired 

dynamic variables [1]. 

 

In the order side, the hyperthermia is a cancer treatment where the tumor tissue it is heated to high 

temperatures, frequently between 40°C and 47°C, and the heating imposed is carried out by induction 

of electromagnetic waves [2]. Currently, the hyperthermia treatment with  nanoparticles loaded into 

the tumorous cells it is being studied, this treatment can concentrate the temperature increase in the 

tumor region, thus not resulting on damages to the healthy tissues [3–10]. 

 

Currently, the particle filter methods have been used in the analysis of radiofrequency hyperthermia 

treatment with nanoparticles providing excellent results in state estimation [4] and simultaneous 

parameter and state estimation [9,11] in simple geometries. In this paper the particle filter is extended 

to combined parameter and state estimation in a complex domain by the proposal of Liu & West [12].   
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2. Parameter and state estimation problem  

In the parameter and state estimation problem, consider a model for the evolution given by [13]: 

 1 1, ,k k k k x f x θ v        (1)  

where the subscript k = 1, 2, ..., denotes a time instant kt  in a dynamic problem. The vector xn
Rx  is  

the state vector and contains the variables to be dynamically estimated and kf  is a general function of 

the state variables x, of the vector of parameters θ and of the state noise vector 1kv  [13]. 

 

The measurements zn
k Rz are available at kt , k = 1, 2, ..., and are related to the state variables kx  

through the observation model given by: 

 , ,k k k kz h x θ n             (2) 

where kh  is a function of the state variables x, of the parameters θ and measurement noise DRn . 

 

This paper considered the filtering form of the state estimation problem. By assuming that 

00 0π ,( | ) ( )πx z θ x  is available at time 0t , 1:π ,( | )k kx z θ  is obtained with Bayesian filters in two 

sequential steps, prediction and update. In the prediction step, the state evolution model is used to 

advance the vector of state variables from time 1kt   to time kt , providing a prior distribution π( )kx  

for the state variables at time kt . In the update step, the information provided by the measurements is 

then adjoined to this prior distribution through Bayes' theorem, by using the likelihood function 

( )π ,|k kz x θ [1]. 

 

The Particle Filter method is a Monte Carlo technique, where the required posterior density function is 

represented by a set of random samples with associated weights; the statistics of the posterior 

distribution is computed based on these samples and weights [1]. Let i
kx  denote the particle i, with 

associated weight , 0,...,i
kw i N  at time kt . Also let the set of all state variables 

0: { , 0,1,..., }k j j k x x up to kt , where N is the number of particles. The weights are normalized so 

that 
1

1
N i

ki
w


 . Then, the posterior marginal distribution, can be approximated by [1]: 

1
π( | , ) ( )

N i i
k k k k ki

w 


 x z θ x x                (3) 

with weights computed from:  

1π( | , )i i i
k k k kw w  z x θ      (4) 

The algorithm by Liu & West [12], which is based on the auxiliary sample importance resampling 

(ASIR) version of the particle filter [14], can be used for the estimation of the posterior probability 

distribution  1:π , |k kx θ z . The particles are represented to { , : 0,..., }i i
k k i Nx θ and the particle filter is 

based  on the hypothesis that the vector of non-dynamic parameters θ  is represented by [15]: 

2
1: 1 1 1 1

1

π( ) N( , )
N

i i
k k k k

i

w h   



θ z θ m V                                               (5) 

where N( ; , )θ a B  is a multivariate normal density with mean a and covariance matrix B, while h is a 

smoothing factor and 1kV  is the Monte Carlo posterior covariance matrix at time kt . Equation (5) 
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shows that the above density is a mixture of Gaussian 2
1 1N( , )i

k kh θ m V  distributions weighted by the 

sample weights 1
i
kw  . The Gaussian kernel centers 1km  are specified by the shrinkage rule [15]: 

1 1 1(1 )i i
k k ka a    m θ θ           (6)  

where kθ  is the mean of θ  at time kt . The shrinkage factor is computed by: 

3 1

2
a






                                                                       (7) 

where 0.95 0.99   is a discount factor. The smoothing factor h, also depends on the shrinkage 

factor, as follows: 

2 21h a                   (8) 

Table 1. Liu and West’s algorithm [12]. 

Select a value for [0.95;0.99]  , then compute a  with equation (7)  and h
2
 with equation (8); 

For i =1‚ …, N      Compute 1
i
km  with Equation (6) and calculate 1 1[ | , ]i i i

k k k kE   x x m .  

                        Calculate the weights with likelihood density 1 1π( | , )i i i i
k k k k k  w z m w . 

Calculate the total weight i
ki

t  w ; Normalize the particle weights, for i = 1‚ ...‚ N let 1i i
k ktw w . 

Construct the cumulative sum of weights (CSW) by 1
i

i i kc c  w for i = 1‚...‚N with 0 0c   

Let i = 1 and draw a starting point u1 from the uniform distribution U[0,N
-1

] 

For j = 1‚ ... ‚ N     Move along the CSW by making 1
1 ( 1)ju u N j     

                            While uj > ui make i = i +1;           Assign parent i
j
 = i. 

For j = 1‚ ...‚ N     Draw samples j
kθ  from 2

1 1N( | , )j ij
k k kh θ m V , by using the parent ij. 

For j = 1‚ ...‚ N       Draw particles j
kx  from the prior density 1π( | , )ij j

k k kx x θ , by using the parent ij,  

                     Calculate the correspondent weights 
π( | , )

π( | , )

j j
j k k k
k ij ij

k k k

w



z x θ

z m
, with likelihood density 

Calculate the total weight i
ki

t  w ; Normalize the particle weights, for i = 1‚ ...‚ N let 1i i
k ktw w . 

3. Physical Problem and mathematical formulation 

The physical problem considered involves a 2D complex domain that consists of different biological 

healthy tissues like muscle, pancreas, lungs, small intestine, fat, arteries, vertebrae and a tumor loaded 

of iron oxide nanoparticles. Thermophysical properties in the tissues are constant and two external 

electrodes for induction of radiofrequency are considered, the physical problem is shown in Figure 1. 

The electric potential within the domain can obtained by solving the Laplace's equation [16]: 

 (X) (X) 0             (10) 

where   is the potential;   is the permittivity and X are the Cartesian coordinates, this is X = (x,y). 

The interfaces between the tissues are assumed to have ideal electric contact. The boundary conditions 

on the surface of the domain are given by: 

   (X) U    at 1
                                                              (11) 

(X) 0    at 2                                                             (12) 

(X) 0  n  elsewhere over the boundary                                     (13) 
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Figure 1. System Domain 

where U denote the electric potential, 1
  is the upper electrode and 2   is the lower electrode. The 

electric field strength E and the magnetic field H are obtained by: 

(X) (X) E            (14) 

0

(X)1
(X)

1 ( )N f R  




E
H     (15) 

where ( ) 1/ 3N    is the demagnetizing factor of the composite tissue [17],   is the susceptibility of 

the magnetic nanoparticles that can be described in terms of complex susceptibility ' i "     [18], 

o  is the dielectric constant permeability of free space 
-7 -1( =4π x 10 T m A )o   , f is the 

electromagnetic frequency and R is the radius of magnetic induction loop. The electric heat source in 

the tissues that do not contain nanoparticles is given by [16]: 

 
2

(X)
X

2x

x
eQ




E
                                             (16)       

where x  is the electric conductivity of the biological healthy tissue. The contribution for the heat 

source resulting from the presence of the magnetic nanoparticles is [18]: 

0 (X)nQ f "   H                                       (17) 

Thus, the heat source in the tumor due to induction of magnetic nanoparticles is calculated by [17]: 

  
2

2

2
0

(X) 9
X (1 ) (X)

2 16y

y
e

"
Q

f R

 
 

 

 
    

  

E
E                              (18) 

where 
2 /n r A   is the concentration of nanoparticles, r is the mean radius of the supposedly 

spherical nanoparticles, n is the number of nanoparticles, A is the area of the tumor and y  is the 

electrical conductivity of the tumor embedded with nanoparticles, which can be approximated by a 

serial arrangement of the two materials, this is, 1/ (1 ) / /y y n'       , where y'  and n  are the 

electrical conductivity of tumor and nanoparticles, respectively. The permittivity of the tumor tissue 

embedded with nanoparticles is approximated by y y'  , where y'  is permittivity of the tumor, since 

the concentration of particles is too small and differences in this parameter for biological tissue and 

nanoparticles are not evidently large.  

 

The mathematical formulation for bioheat transfer in this study is described by Pennes's Equation [19]: 
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   
 

           ,

X,
X X X X, X X, X Xp b p b b b m e

T t
c k T t c T T t Q Q

t
  


            

 (19) 

where  is the density, cp is the specific heat, k is the thermal conductivity, b is the blood density, cp,b 

is the specific heat of blood, b is the blood perfusion rate, Tb is the blood temperature, Qm is the 

metabolic heat source and Qe is the electrical heat source generated by radiofrequency external 

excitation given by equations (16) and (18). The interfaces between biological healthy tissues are 

assumed to be in ideal thermal contact and the thermal boundary conditions are given by: 

(X)
(X) 0 at 0, ,0 , 0

(X)
(X) ( (X) ) at 0, ,0 , 0

x y

f f x x

T
k x x L y L t

x

T
k h T T y y L x L t

y


       




       
 

                    (20) 

where hf  is the heat transfer coefficient, Tf is the temperature of the surrounding medium, Lx and Ly  

are the domain lengths in the x and y directions. The initial temperature T0 is considered constant. 

4. Results and discussions 

A 2D complex domain considered is shown in Figure 1. The lengths of both electrodes are 20 cm. 

Thermophysical properties of the biological healthy tissues and tumor, and the electrical properties 

considering a frequency f = 1 MHz are described in Table 2.  For the convective boundary condition 

we assume Tf = 20°C, and hf = 45 W/(m
2
.K). The initial condition is taken as the uniform temperature 

T0 = 37°C. For the iron oxide nanoparticles (Fe3O4) that are assumed to be uniformly distributed into 

the tumor, the following parameters have been considered: kn = 40 W/(m.K), cp,n = 4000 J/(kg.K), ρn = 

5180 kg/m
3
 , n = 25000 S/m, n = y and magnetic susceptibility "  = 18 , with n = 8x10

10
 

nanoparticles of radius r = 10
-8

 m. The thermal properties for the tumor embedded with nanoparticles 

was approximated by the rule of mixture [17]. 

Table 2. Thermophysical and Electrical Properties [20]. 

Parameter Pancreas 
Small 

Intestine 
Lung Muscle Fat Vertebrae Arteries Tumor 

Thermal Conductivity 

(k) W/(m.K) 
0.51 0.49 0.39 0.49 0.21 0.32 0.46 0.75

2
 

Specific Heat (cp) 

J/(kgK) 
3164 3595 3886 3421 2348 1313 3306 3164

1
 

Density () kg/m
3
 1087 1030 394 1090 911 1908 1102 1087

1
 

Perfusion Coefficient 

() s
-1

 
0.01389 0.01761 0.00263 0.0006 0.0005 0.0003 0.0027 0.02 

Metabolic Heat Source 

(Qm) W/m
3
 

12924.43 16366.7 2446.74 991.9 464.61 286.2 2556.64 42000
2
 

Electrical Conductivity 

() S/m 
0.603 0.865 0.136 0.503 0.0441 0.00244 0.327 0.723

2
 

Permittivity ( ) 1430 5680 733 1840 50.8 145 218 1716
2
 

1 thermal properties of pancreas. 2 [4] 

 

The direct problem solution is analyzed without and with nanoparticles of Fe3O4, the applied voltage 

on the upper electrode is 10V with respect to ground, the lower electrode maintained to ground, during 

900s. Figure 2.a presents the transient temperature inside the tumor, at the position x = 22.5 cm and y 

= 5 cm. For the case without nanoparticles, the maximum temperature is 38.78°C, and the temperature 

increase does not reach levels of hyperthermia. For the case with nanoparticles inside tumor, the 

maximum temperature is 44.34°C, which, reveals that the use of nanoparticles in the tumor increase 

the temperature substantially in this region while keeping the other regions at lower temperatures (see 

Figure 2.b for the temperature in the pancreas at the position x = 22.5 cm and y = 7 cm). 
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     (a)                                                                                                     (b) 

Figure 2. Transient Temperature (a) in Tumor (sensor position), (b) in Pancreas. 

For the solution of the parameter and state estimation problem, one single sensor was assumed 

available for the inverse analysis, located inside the tumor. The measurements were generated from 

the solution of the direct problem with the parameters specified above. Uncorrelated Gaussian errors 

with zero mean and standard deviation of 1°C were then added to the solution. The simulated 

measurements were supposed available every 20s. 

 

The evolution model for the electric field was taken in the form of a random walk, that is, for each 

particle i, was added a Gaussian random variable with zero mean and a standard deviation of 10% of 

the deterministic solution of the electrical problem 

 

Gaussian uncorrelated noise with zero mean and a standard deviation of 1
o
C was also added to the 

solution of the bioheat transfer problem, which served as the evolution model for the temperature. 

 

The prior probability densities for the parameters θ  were assumed as Gaussians, with zero mean and 

standard deviation of 10% of the mean value of each parameter. The vector of parameters is given by 

, , , , , , ,[ , , , , , , , , , , , , , , , , , ]x y p b p x p y b x y b x b y m x m y f x yk k c c c Q Q h n r "       θ                  (21) 

where the subscript x indicated the properties of biological healthy tissue (pancreas, small intestine, 

lung, muscle, fat, vertebrae and arteries) which are different for each of these, the subscript y indicate 

the properties of tumor embedded with nanoparticles. 

 

The effects of the number of particles on the estimation of parameter and state variables were 

examined by using 50, 100 and 250 particles. The accuracy of the estimation of state variables was 

addressed in terms of the means and standard deviations of the root mean square error (RMS), 

obtained with thirty repetitions of Liu & West's algorithm. Table 3 shows the means and standard 

deviation values of the thirty repetitions of the particle filter, for each case examined. It is observed 

that the means and standard deviations of the RMS error decrease when the number of particles is 

increased, as expected. 

Table 3. RMS results. 

Number of Particles RMS   Standard Deviation 

50 0.835 0.423 

100 0.727 0.395 

250 0.601 0.378 

 

Figure 3.a shows the transient temperature at the tumor (sensor position) obtained with the Liu & 

West's algorithm of particle filter with 100 particles, where we note that the estimated temperature is 
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in better agreement with the exact solution than the measurements.  Figure 3.b presents the transient 

temperature inside the pancreas (no available measures). It is observed that the estimated temperature 

is in excellent agreement with the exact temperature. In this case, although is observed a great RMS 

errors; note in these figures that the temperatures can be quite accurately estimated. 

 

Figure 4 shows the evolution in time of selected parameters with 100 particles. Note that the estimated 

means are in excellent agreement with the exact ones, even with only 100 particles. Although the great 

uncertainties in the measurements and in the evolution and observation models. Observe, the 

uncertainties related to the parameters have a propensity to decrease as time evolves and more 

information becomes available for the solution. Indeed, the results presented above show that both 

parameters and state variables could be accurately recovered with Liu & West's algorithm of the 

particle filter. 

 
     (a)                                                                                                (b) 

Figure 3. Estimated Transient Temperature (a) in Tumor (sensor position), (b) in Pancreas. 

 
Figure 3. Estimated parameters values: exact (dark black lines), estimated (black lines) and 99% 

bonds (dashed lines), subscript 1 are the pancreas properties and 2 are the tumor properties. 

5. Conclusions 

The accuracy of the particle filter algorithm for combined parameter and state estimation was applied 

to the estimation of the temperature field in radiofrequency hyperthermia with magnetic nanoparticles 

of iron oxide, using one single measurement, in a 2D complex geometry. Excellent results were 

obtained for the estimations of parameters and state variables, with large uncertainties and small 

number of particles, even in locations where no measurements are available. The results presented 

herein are expected to contribute for future temperature control in the hyperthermia treatment. 

 

Acknowledgments 

The financial support provided by FAPERJ, CAPES and CNPq. 

7th European Thermal-Sciences Conference (Eurotherm2016) IOP Publishing
Journal of Physics: Conference Series 745 (2016) 032014 doi:10.1088/1742-6596/745/3/032014

7



 
 
 
 
 
 

References 

[1]  Kaipio J P and Somersalo E 2004 Computational and Statistical Methods for Inverse 

Problems (Berlin, Heidelberg: Springer) 

[2]  Miaskowski A and Sawicki B 2013 Magnetic fluid hyperthermia modeling based on phantom 

measurements and realistic breast model. IEEE Trans. Biomed. Eng. 60 1806–13 

[3]  Kurgan E and Gas P 2015 Simulation of the electromagnetic field and temperature distribution 

in human tissue in RF hyperthermia Prz. Elektrotechniczny 1 171–4 

[4]  Bermeo Varon L A, Orlande H R B and Elicabe G 2015 Estimation of state variables in the 

hyperthermia therapy of cancer with heating imposed by radiofrequency electromagnetic waves 

Int. J. Therm. Sci. 98 228–36 

[5]  Dombrovsky L A, Timchenko V, Jackson M and Yeoh G H 2011 A Combined Transient 

Thermal Model for Laser Hyperthermia of Tumors with Embedded Gold Nanoshells Int. J. 

Heat Mass Transf. 54 5459–69 

[6]  Lamien B, Orlande H R B, Elicabe G E and Maurente A J 2014 State Estimation Problem in 

Hyperthermia Treatment of Tumors Loaded with Nanoparticles Proceedings of the 15th 

International Heat Transfer Conference, IHTC-15 (Kyoto, Japan) pp 1–15 

[7]  Kurgan E and Gas P 2011 Treatment of Tumors Located in the Human Thigh using RF 

Hyperthermia Prz. Elektrotechniczny 87 103–6 

[8]  Gas P and Miaskowski A 2015 Specifying the ferrofluid parameters important from the 

viewpoint of Magnetic Fluid Hyperthermia Sel. Probl. Electr. Eng. Electron. IEEE Xplore 

Digit. Libr. 1–6 

[9]  Bermeo Varon L A, Orlande H R B and Eliçabe G E 2015 Combined Parameter and State 

Estimation in the Radiofrequency Hyperthermia Treatment of Cancer Heat Transf. Part A Apl. 

accept 1–31 

[10]  Lamien B, Bermeo Varon L A, Orlande H R B and Eliçabe G E 2016 State Estimation in 

Bioheat Transfer: a Comparison of Particle Filter Algorithms Int. J. Numer. Methods Heat 

Fluid Flow Submitted 1–40 

[11]  Lamien B, Orlande H R B and Eliçabe G E 2015 Comparison of Particle Filter Algorithms 

Applied to the Temperature Filed Estimation in Hyperthermia Phantoms 1st Thermal and Fluid 

Engineering Summer Conference, ASTFE, 2015 (New York, New York, USA) p TFESC – 

13764 

[12]  Liu J and West M 2001 Combined parameter and state estimation in simulation based filtering 

Sequential Monte Carlo Methods in Practice ed S A. Doucet, N. de Freitas, and N. Gordon, 

(Eds.), New York pp 197–217 

[13]  Arulampalam M S, Maskell S, Gordon N and Clapp T 2002 A tutorial on particle filters for 

online nonlinear/non-Gaussian Bayesian tracking IEEE Trans. Signal Process. 50 174–88 

[14]  Pitt M K and Shephard N 1999 Filtering via Simulation: Auxiliary Particle Filters J. Am. Stat. 

Assoc. 94 1–41 

[15]  West M 1993 Approximating Posterior Distributions by Mixture J. R. Stat. Soc. B 409–22 

[16]  Cheng D K 1993 Fundamentals of Engineering Electromagnetics (United State of America: 

Addison-Wesley Publishing Company, Inc) 

[17]  Andra W, Ambly C G, Hergt R, Hilger I and Kaiser W A 1999 Temperature distribution as 

function of time around a small spherical heat source of local magnetic hyperthermia J. Magn. 

Magn. Mater. 194 197–203 

[18]  Rosensweig R E 2002 Heating magnetic fluid with alternating magnetic field J. Magn. Magn. 

Mater. 252 370–4 

[19]  Pennes H H 1948 Analysis of tissue and arterial blood temperatures in the resting human 

forearm. 1948. J. Appl. Physiol. 1 93–124 

[20]  Hasgall P ., Di Gennaro F, Baumgartner C, Neufeld E, Gosselin M ., Payne D, Klingenböck A 

and Kuster N 2015 IT’IS Database for thermal and electromagnetic parameters of biological 

tissues Version 3.0 

7th European Thermal-Sciences Conference (Eurotherm2016) IOP Publishing
Journal of Physics: Conference Series 745 (2016) 032014 doi:10.1088/1742-6596/745/3/032014

8


