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Abstract. An active mass damper implementing two auxiliary masses rotating about a single 
axis is presented. This device is used for the vibration control of an oscillator performing 
translational motion in a plane (two translational degrees of freedom). In a preferred mode of 
operation, both auxiliary masses rotate with the same constant angular velocity in opposite 
directions. The resultant of the produced harmonic centrifugal forces is used for the vibration 
control. The direction of this control force can be altered by slightly varying the angular 
velocity of the auxiliary masses. Using an energy approach, a control algorithm was derived. 
The control algorithm ensures that the control force effectively damps the oscillator when it is 
displaced in a single, arbitrary direction. Numerical simulations were performed, showing that 
the presented device with the corresponding control algorithm effectively damps the vibrations 
on the oscillator. 

1.  Introduction 
 
High-rise buildings oscillate in both the windward and leeward directions [1]. If the amplitude of these 
vibrations becomes too large, the occupants of the upper stories of the building may become uneasy. 
Such vibration-induced problems are not only restricted to high-rise buildings. The wind induced 
vibrations of monopile wind turbine towers also occur simultaneously in two degrees of freedom [2], 
leading to increased material fatigue. The first vibration mode mainly determines the motion of such 
cantilever structures. This motion can be approximated using the oscillator introduced in the following 
section. To counter these phenomena, an active mass damping device for the vibration control of an 
oscillator with two translational degrees of freedom has been developed. The centrifugal forces created 
by the rotational motion of two auxiliary masses is implemented for the vibration control. A similar 
device, the twin rotor damper (TRD), has been shown to be effective for damping vibrations of 
oscillators with a single degree of freedom [3], [4], [5]. To ensure power and energy efficiency, the 
TRD is required to operate in a preferred mode of operation in which both auxiliary masses rotate in 
opposite directions with the same constant angular velocities. The same principle is now used for the 
vibration control of an oscillator with two translational degrees of freedom. An energy approach is 
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used to derive the control algorithm, which is then tested for free vibrations in open-loop configuration 
analytically and in closed-loop configuration numerically. 

2.  Oscillator with two translational degrees of freedom and damping device 

2.1.  Oscillator with two translational degree of freedom  
The two degree of freedom (TDOF) oscillator is shown in figure 1. The rotational degree of freedom 
will be neglected. For a free vibration, the motion of the TDOF oscillator in 𝑥 and 𝑦 direction is 
described by equation (1), in which 𝑚 + 𝑚𝑐 is the total mass of the TDOF oscillator, 𝑚𝑐 is the mass 
of both auxiliary masses, 𝑘 is the spring stiffness, and 𝑐 is the damping coefficient. The indices denote 
the degree of freedom and the dot operator indicates a derivative with respect to time. 

 
(𝑚 + 𝑚𝑐)𝑥̈ + 𝑐𝑥𝑥̇ + 𝑘𝑥𝑥 = 0                 (𝑚 + 𝑚𝑐)𝑦̈ + 𝑐𝑦𝑦̇ + 𝑘𝑦𝑦 = 0    (1) 

The spring stiffnesses 𝑘𝑥 and  𝑘𝑦 and the damping coefficients 𝑐𝑥 and 𝑐𝑦 are considered to be equal 
in each direction. Therefore, these indices will be dropped. The natural circular frequency 𝜔0 and the 
damping ratio 𝜁 are given by equations (2) and (3), respectively. The damped natural circular 
frequency of the system 𝜔 and the natural period of the TDOF oscillator are given by equation (4) [6]. 
Assuming that the spring stiffnesses and damping coefficients of TDOF oscillator are equal, the 
response of the oscillator in each direction is equivalent. Consequently, the control algorithm derived 
hereinafter is confined to such oscillators. Furthermore, inherent damping is neglected as it only leads 
to a more complex derivation of the control algorithm without providing additional insight. 

𝜔0 = �
𝑘

𝑚 + 𝑚𝑐
�
1/2

 (2) 

𝜁 =
𝑐

2(𝑚 + 𝑚𝑐)𝜔0
 (3) 

𝜔 = 𝜔0(1− 𝜁2)1 2⁄  𝑇𝑛 =
2𝜋
𝜔0

 (4) 

2.2.  Damping device and control force 
The active mass damping device implemented for the vibration control of the TDOF oscillator is 

shown in figure 2. The device consists of two auxiliary masses 0.5𝑚𝑐 connected to a single axis by a 
massless rod with the length 𝑟. The rotors (control mass with massless rod) can move independently 

𝑐𝑦 
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𝑚 + 𝑚𝑐 

Figure 1: Oscillator with two translational degrees of freedom. 
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from each other. The angular position of each rotor, 𝜑1(𝑡) and 𝜑2(𝑡), is measured from the positive 𝑦-
axis, whereas 𝑡 denotes the time dependency.  

 

In a preferred mode of operation, each rotor rotates in opposite directions with the same constant 
angular velocity 𝜑̇. Therefore, the angular positions are defined by equation (5), in which 𝜑01 and 𝜑02 
are the initial angular positions. Due to the constant angular velocity 𝜑̇, only the radial force 
(centrifugal force) given by equation (6) is produced by each rotor. Separating these forces into their 𝑥 
and 𝑦 components, equations (7) and (8) are formed. The resultant of these two forces defines the 
control force used for the active vibration control. The direction of this control force, 𝜑𝐷, solely 
depends on the initial angular positions, see equation (9). To alter 𝜑𝐷, the relative angular position 
between the rotors must be varied, hence changing the angular velocities. This requires unique angular 
accelerations 𝜑̈1 and 𝜑̈2, ergo tangential forces (normal to the radial forces) in 𝑥 and 𝑦 direction, given 
by equations (10) and (11), are additionally produced. Note, in this case, the no longer constant 
angular velocities need to be considered in equations (7) and (8). 

𝜑1(𝑡) = 𝜑̇𝑡 + 𝜑01 𝜑2(𝑡) = 𝜑̇𝑡 + 𝜑02 (5) 

𝑓𝑟 =
𝑚𝑐

2
𝑟𝜑̇2 

 
(6) 

𝑓𝑟𝑥(𝑡) =
𝑚𝑐

2
𝑟𝜑̇2[sin(𝜑̇𝑡 + 𝜑02) − sin(𝜑̇𝑡 + 𝜑01)]  (7) 

𝑓𝑟𝑦(𝑡) =
𝑚𝑐

2
𝑟𝜑̇2[cos(𝜑̇𝑡 + 𝜑02) + cos(𝜑̇𝑡 + 𝜑01)]  (8) 

𝜑𝐷 =
𝜑01 − 𝜑02

2
  (9) 

𝑓𝑡𝑥(𝑡) =
𝑚𝑐

2
𝑟(𝜑̈1 cos𝜑1 − 𝜑̈2 cos𝜑2)  (10) 

𝑓𝑡𝑦(𝑡) =
𝑚𝑐

2
𝑟(𝜑̈1sin𝜑1 +𝜑̈2 sin𝜑2)  (11) 

3.  Control algorithm  

3.1.  Energy approach to ensure maximum damping action 
The simplified equations of motion given by equation (12) are derived from equation (1) by dividing it 
by (𝑚 + 𝑚𝑐) and inserting equation (2) into (1) while neglecting inherent damping. Solving these 

Figure 2: Damping device. 
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equations of motion, under the assumption that the effect of the control force on the motion is small, 
for the displacement response of the TDOF oscillator yields equation (13), whereas the index 0 
denotes the initial states [6]. The velocity response of the TDOF oscillator is given by the time 
derivative of equation (13) seen in equation (14). The control force is required to damp the motion 
described by this equation. Therefore, the angular velocity of the rotors is set equal to 𝜔0 and the 
damping device is operating in the preferred mode of operation. In equation (15), the power of the 
control force in each direction is given. Integrating equation (15) from 𝑡 = 0 to 𝑡 = 2𝜋𝑙𝜔0

−1 yields the 
work done by the control force in each direction on the TDOF oscillator for 𝑙 vibration cycles, see 
equation (16). The total work done by the control force is the sum of the work done by it in 𝑥 and 𝑦 
direction as seen in equation (17). The control force is used to dissipate energy from the oscillator, 
therefore when the energy in equation (17) is minimal, maximum damping action is achieved. 

𝑥̈ + 𝜔0
2𝑥 = 0 𝑦̈ + 𝜔0

2𝑦 = 0 (12) 

𝑥(𝑡) = 𝑥0 cos(𝜔0𝑡) +
𝑥̇0
𝜔0

sin(𝜔0𝑡) 𝑦(𝑡) = 𝑦0 cos(𝜔0𝑡) +
𝑦̇0
𝜔0

sin(𝜔0𝑡) (13) 

𝑥̇(𝑡) = 𝑥̇0 cos(𝜔0𝑡) − 𝑥0𝜔0 sin(𝜔0𝑡) 𝑦̇(𝑡) = 𝑦̇0 cos(𝜔0𝑡) − 𝑦0𝜔0 sin(𝜔0𝑡) (14) 

𝑃𝑥(𝑡) =  𝑓𝑟𝑥(𝑡)𝑥̇(𝑡) 𝑃𝑦(𝑡) =  𝑓𝑟𝑦(𝑡)𝑦̇(𝑡) (15) 

∆𝐸𝑥 =  � 𝑓𝑟𝑥(𝑡)𝑥̇(𝑡)𝑑𝑡
2𝑙𝜋
𝜔0

0
=

1
2
𝑚𝑐𝑟𝑙𝜔0𝜋[𝑥̇0(sin𝜑02 − sin𝜑01) + 𝑥0𝜔0(cos𝜑01 − cos𝜑02)]  

 (16) 

∆𝐸𝑦 = � 𝑓𝑟𝑦(𝑡)𝑦̇(𝑡)𝑑𝑡
2𝑙𝜋
𝜔0

0
=

1
2
𝑚𝑐𝑟𝑙𝜔0𝜋[𝑦̇0(cos𝜑01 + cos𝜑02) + 𝑦0𝜔0(sin𝜑01 + sin𝜑02)]  

∆𝐸 = ∆𝐸𝑥 + ∆𝐸𝑦 (17) 

Equation (17) is a function of the initial angular positions 𝜑01 and 𝜑02. The extrema of 
equation (17) are identified by setting its partial derivatives with respect to each initial angular 
position equal to zero, see equations (18) and (19). Solving these equations for the initial angular 
positions yields equations (20) and (21). 
𝜕∆𝐸
𝜕𝜑01

=
1
2
𝑚𝑐𝑟𝜔0𝜋𝑙(−𝑥̇0 cos𝜑01 − 𝑥0𝜔0 sin𝜑01 −𝑦̇0 sin𝜑01 + 𝑦0𝜔0 cos𝜑01) = 0 (18) 

𝜕∆𝐸
𝜕𝜑02

=
1
2
𝑚𝑐𝑟𝜔0𝜋𝑙(𝑥̇0 cos𝜑02 + 𝑥0𝜔0 sin𝜑02 −𝑦̇0 sin𝜑02 + 𝑦0𝜔0 cos𝜑02) = 0 (19) 

𝜑01 = tan−1
−𝑥̇0 + 𝑦0𝜔0

𝑥0𝜔0 + 𝑦̇0
 (20) 

𝜑02 = −tan−1
𝑥̇0 + 𝑦0𝜔0

𝑥0𝜔0 − 𝑦̇0
 (21) 

To identify the type of extremum, it is required to calculate the second partial derivative of 
equation (17) with respect to each initial angular position, see equations (22) and (23). If the second 
partial derivative is greater than zero when inserting the value of the starting angular positions given 
by equations (20) and (21), the extremum is a minimum. If the second partial derivative is smaller than 
zero, the extremum is a maximum. Note, the signs of equations (22) and (23) alternate in multiples of 
𝜋. This means that when equation (18) is at a minimum, equation (19) is at a maximum and vice versa. 
Therefore, to assure that both rotors start with (optimal) initial angular positions corresponding to 
maximum damping performance (minimum work done by the control force), 𝜋 needs to be added to 
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equation (20) or (21) depending on the sign of equations (22) and (23). Hence, the optimal initial 
angular positions 𝜑01,𝑜 and 𝜑02,𝑜 are given by equations (24) and (25). 

𝜕2∆𝐸
𝜕𝜑012

=
1
2
𝑚𝑐𝑟𝜔0𝜋(𝑥̇0 sin𝜑01 − 𝑥0𝜔0 cos𝜑01 −𝑦̇0 cos𝜑01 − 𝑦0𝜔0 sin𝜑01) (22) 

𝜕2∆𝐸
𝜕𝜑022

=
1
2
𝑚𝑐𝑟𝜔0𝜋(−𝑥̇0 sin𝜑02 + 𝑥0𝜔0 cos𝜑02 −𝑦̇0 cos𝜑02 − 𝑦0𝜔0 sin𝜑02) (23) 

𝜑01,𝑜 =

⎩
⎪
⎨

⎪
⎧𝜑01             for    

𝜕2∆𝐸
𝜕𝜑01

2 > 0

𝜑01 + 𝜋     for    
𝜕2∆𝐸
𝜕𝜑01

2 < 0

� (24) 

𝜑02,𝑜 =

⎩
⎪
⎨

⎪
⎧𝜑02             for    

𝜕2∆𝐸
𝜕𝜑02

2 > 0

𝜑02 + 𝜋     for    
𝜕2∆𝐸
𝜕𝜑02

2 < 0

� (25) 

3.2.  Open-loop configuration 
Applying the control forces from equations (7) and (8) to the free vibrations of the TDOF oscillator, 
the equations of motion (26) and (27) are formed, in which 𝜇𝑐 is the ratio of the control mass to total 
mass, see equation (28). The optimal initial angular positions 𝜑01,𝑜 and 𝜑02,𝑜 are utilized for the open-
loop configuration of free vibrations of the TDOF oscillator. Solving these differential equations for 
the displacement responses of the TDOF oscillator yields equations (29) and (30) [7]. These equations 
characterize the trajectory of the TDOF while being damped by the control forces. 

𝑥̈ + 𝜔0
2𝑥 =

𝜇𝑐
2
𝑟𝜔0

2�sin�𝜔0𝑡 + 𝜑02,𝑜� − sin�𝜔0𝑡 + 𝜑01,𝑜��               (26) 

𝑦̈ + 𝜔0
2𝑦 =

𝜇𝑐
2
𝑟𝜔0

2�cos�𝜔0𝑡 + 𝜑02,𝑜� + cos�𝜔0𝑡 + 𝜑01,𝑜�� (27) 

𝜇𝑐 =
𝑚𝑐

𝑚 + 𝑚𝑐
 (28) 

𝑥(𝑡) =
𝑥̇0
𝜔0

sin(𝜔0𝑡) + 𝑥0cos(𝜔0𝑡) +
𝜇𝑐𝑟

4 �sin(𝜔0𝑡)�cos𝜑02,𝑜 − cos𝜑01,𝑜� + ⋯� 

             �𝜔0𝑡�cos�𝜔0𝑡 + 𝜑01,𝑜� − cos�𝜔0𝑡 + 𝜑02,𝑜��� 
(29) 

  

𝑦(𝑡) =
𝑦̇0
𝜔0

sin(𝜔0𝑡) + 𝑦0cos(𝜔0𝑡) +
𝜇𝑐𝑟

4 �−sin(𝜔0𝑡) �sin𝜑02,𝑜 + sin𝜑01,𝑜�� + ⋯ 

             �𝜔0𝑡�sin�𝜔0𝑡 + 𝜑02,𝑜� + sin�𝜔0𝑡 + 𝜑01,𝑜���  
(30) 

Figure 3 shows a trajectory of the TDOF oscillator. The arrows depict the direction in which the 
TDOF oscillator is moving. The solid line shows the TDOF oscillator being effectively damped 
(positive active damping) and the dashed line shows the TDOF oscillator being re-excited (negative 
active damping). Note all initial states are normalized with respect to the initial displacement 𝑥0. The 
unitless ratio 𝜇𝑐𝑟𝑥0−1 determines the decay rate. The higher this ratio becomes the larger the control 
force is; thus, the damping effect is larger. 
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       Figure 3: Open-loop trajectory of the TDOF oscillator with 𝜇𝑐𝑟𝑥0−1 = .06, 

 𝑦0 = 0.5𝑥0, 𝑦̇0 = 0.5𝑥0𝜔0 and 𝑥̇0 = 0.1𝑥0𝜔0 

3.3.  Target angular rotor positions 
In subsection 3.2, the optimal initial angular positions, 𝜑01,𝑜 and 𝜑02,𝑜, were derived. These angular 
positions ensure that maximum damping performance for the free vibrations of the TDOF oscillator is 
achieved. This approach is adequate for the open-loop control of free vibrations. However, when 
additional factors such as external loadings, friction, or system imprecisions are considered, this open-
loop control could lead to large inaccuracies [8]. A closed-loop configuration is, in such cases, more 
reliable and can be designed by continuously calculating optimal angular positions based on the states 
of the TDOF oscillator. This is done using the same method used for the calculation of the optimal 
initial angular rotor positions; however, now the initial states (𝑥0, 𝑥̇0,𝑦0, 𝑦̇0) are replaced with the 
continuous states (𝑥(𝑡), 𝑥̇(𝑡),𝑦(𝑡), 𝑦̇(𝑡)), see equations (31)-(34). The continuously calculated optimal 
angular positions, 𝜑𝑇1,𝑜(𝑡) and 𝜑𝑇2,𝑜(𝑡), will henceforth be referred to as target angular positions. The 
damping direction defined by equation (9) is now, due to the time dependent target angular positions, 
able to change with respect to time and given by equation (35). As the damping direction is now time-
dependent, the direction of the control force is required to change. This is done by allowing for small 
variations in the angular velocities. 

𝜑𝑇1(𝑡) = tan−1
−𝑥̇(𝑡) + 𝑦(𝑡)𝜔0

𝑥(𝑡)𝜔0 + 𝑦̇(𝑡)
 (31) 

𝜑𝑇2(𝑡) = −tan−1
𝑥̇(𝑡) + 𝑦(𝑡)𝜔0

𝑥(𝑡)𝜔0 − 𝑥̇(𝑡)
 (32) 
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𝜑𝑇1,𝑜(𝑡) =

⎩
⎪
⎨

⎪
⎧𝜑𝑇1(𝑡)             for    

𝜕2∆𝐸
𝜕𝜑𝑇1(𝑡)2 > 0

𝜑𝑇1(𝑡) + 𝜋     for    
𝜕2∆𝐸

𝜕𝜑𝑇1(𝑡)2 < 0

� (33) 

𝜑𝑇2,𝑜(𝑡) =

⎩
⎪
⎨

⎪
⎧𝜑𝑇2(𝑡)             for    

𝜕2∆𝐸
𝜕𝜑𝑇2(𝑡)2 > 0

𝜑𝑇2(𝑡) + 𝜋     for    
𝜕2∆𝐸

𝜕𝜑𝑇2(𝑡)2 < 0

� (34) 

𝜑𝐷(𝑡) =
𝜑𝑇1,𝑜(𝑡) − 𝜑𝑇2,𝑜(𝑡)

2
 (35) 

3.4.  Closed-loop control algorithm  
The closed-loop configuration used for the tracking of the target angular positions is shown in 
figure 4. The TDOF oscillator provides the continuous states 𝑥(𝑡), 𝑥̇(𝑡),𝑦(𝑡), 𝑦̇(𝑡) which are then used 
to compute the target angular positions according to equations (33) and (34). The angular position 
error is then calculated by comparing the target angular positions 𝜑𝑇1,𝑜(𝑡) and 𝜑𝑇2,𝑜(𝑡) with the 
actual angular positions 𝜑1(𝑡) and 𝜑2(𝑡), see equation (36). The angular position errors 𝑒1(𝑡) and 
𝑒2(𝑡) are then restricted to values between –𝜋 and 𝜋 to form the control errors 𝑒𝑐1(𝑡) and 𝑒𝑐2(𝑡). This 
ensures that the rotors are driven to the closest target angular position [4] [5]. The control error is then 
minimized using a combined closed-loop configuration for the angular position and an open-loop 
configuration for the angular velocity, see equation (37). The open-loop angular velocity configuration 

is used to keep the angular velocity constant and equal to 𝜔0. This is realised by 𝐾𝑐 and enables the 
proportional gain 𝐾𝑝 to be smaller and simultaneously allows for adequately small control errors [8]. 
Therefore, the control efforts are given by equation (37). The proportional gain is tuned by hand and 
constant. Strictly proper transfer functions 𝐺1(𝑠) and 𝐺2(𝑠) with the form shown in equation (38) are 
used to simulate the dynamics of each rotor. The input of the transfer functions is the control effort 
and the output is the angular velocity of the corresponding rotor. Note 𝑎 and 𝑏 are constant values. 
Integrating and deriving the angular velocities with respect to time gives the angular positions and the 

𝑥(𝑡), 𝑥̇(𝑡),𝑦(𝑡), 𝑦̇(𝑡) 
  𝑒1(𝑡) 

𝑒2(𝑡) 

𝜑1(𝑡),𝜑̇1(𝑡),𝜑̈1(𝑡) 
𝜑2(𝑡),𝜑̇2(𝑡), 𝜑̈2(𝑡) 
 
 

Figure 4: Closed-loop control algorithm. 
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angular accelerations. By doing this, all states required to calculate the radial and tangential forces are 
available for the simulation, see figure 4. 

𝑒1(𝑡) =  𝜑𝑇1,𝑜(𝑡) − 𝜑1(𝑡) 𝑒2(𝑡) =  𝜑𝑇2,𝑜(𝑡) − 𝜑2(𝑡) (36) 
𝑐1(𝑡) =  𝑒𝑐1(𝑡)𝐾𝑝 + 𝐾𝑐 𝑐2(𝑡) =  𝑒𝑐2(𝑡)𝐾𝑝 + 𝐾𝑐 (37) 

𝐺(𝑠) =
𝑎

𝑠 + 𝑏
  (38) 

 
3.5.  Numerical closed-loop simulations 
The initial conditions from the open-loop configuration were also used for the numerical simulations 
performed with the closed-loop configuration. The additional variables for the controller and transfer 
function were set to: 𝑎 = 𝑏 = 30, 𝐾𝑐 = 𝜔0 = 2𝜋 and 𝐾𝑝 = 5. In figure 5, the responses of the TDOF 
oscillator together with the control errors and angular velocities of the rotors are shown for a length of 
10𝑇𝑛.  

Figure 5 shows that the vibrations in both 𝑥 and 𝑦 directions are effectively damped. Therefore, the 
total vibration amplitude 𝐴(𝑡) of the TDOF oscillator, given by equation (39), is reduced. At the 
beginning of the simulation, the control errors 𝑒𝑐1(𝑡) and 𝑒𝑐2(𝑡) rise slightly. This is due to the rotors 
having an initial angular velocity of zero. Once the rotors acquire the preferred angular velocity of 𝜔0, 
the control errors become small. 

The control errors are small and the rotors have a mostly constant angular velocity equal to 𝜔0 until 
𝑡 ≈ 4𝑇𝑛. By this time, the vibrations in 𝑥 direction have been damped to approximately half their 
original amplitude, whereas, in the same duration, the vibrations in 𝑦 direction were only damped 
approximately 20%. This is due to the larger initial amplitude of the vibrations in 𝑥 direction. At 
𝑡 ≈ 4𝑇𝑛, the vibrations in 𝑥 and 𝑦 direction have been damped to almost the same vibration amplitude 
and both degrees of freedom have a phase offset of 0.5𝜋. Therefore, the trajectory of the TDOF 
oscillator is approximately circular, see the first subfigure of figure 5. To continue damping the 
vibrations, rotor 1 is required to accelerate strongly and hold a higher angular velocity while rotor 2 
only varies its angular velocity slightly. The acceleration of the rotors produces additional tangential 
forces normal to the radial forces (control force). From 𝐴(𝑡), it can be seen that the vibrations are no 
longer smoothly damped. The tangential forces, mainly induced by rotor 1, slightly excite and then 
damp the vibrations leading to the stronger inconsistencies in 𝐴(𝑡). 

The vibrations are damped until 𝑡 ≈ 7𝑇𝑛, at which time the total vibration amplitude 𝐴(𝑡) starts to 
oscillate around 10% of the initial total vibration amplitude 𝐴0. Starting at this point in time, rotor 2 
no longer has an approximately constant angular velocity, but starts to accelerate strongly and acquires 
an angular velocity similar to rotor 1 by 𝑡 ≈ 8.5𝑇𝑛. 

𝐴(𝑡) = �𝑥(𝑡)2 + �
𝑥̇(𝑡)
𝜔0

�
2

+ 𝑦(𝑡)2 + �
𝑦̇(𝑡)
𝜔0

�
2

�
1 2⁄

 (39) 
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Figure 5: Closed-loop simulations with 𝜇𝑐𝑟𝑥0
−1 = .06, 𝑦0 = 0.5𝑥0, 𝑦̇0 = 0.5𝑥0𝜔0 and 𝑥̇0 =

 0.1𝑥0𝜔0 
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4.  Discussion  
In reality electrical motors would be used to accelerate the rotors. These motors would require more 
energy the more the rotors are required to accelerate. Using the open-loop configuration, the vibrations 
of the TDOF oscillator are re-excited after being originally damped. This and the fact that small 
imprecisions or changes in the modelling would lead to large errors is the reason why a closed-loop 
configuration was developed. However, although the vibrations are not re-excited when using a 
closed-loop configuration, two additional issues arise. When the trajectory of the TDOF oscillator 
becomes circular, one rotor is required to accelerate extremely and take on a higher angular velocity, 
while the other rotor accelerates slightly. The extreme acceleration of one of the rotors indicates that 
large tangential forces are required. The second issue is when the total vibration amplitude, 𝐴(𝑡), 
becomes too small. The device can continue to damp the vibrations of the TDOF oscillator, even after 
reaching the circular state, but once the total vibration amplitude reaches a certain small amplitude 
both rotors are required to accelerate. The acceleration of the rotors and the resulting tangential forces 
are unwanted as additional external energy would be required making the use of the presented device 
less economical. Introducing vibration amplitude thresholds, at which the presented device is turned 
on or off, may be a possibility to avoid these issues. This and other strategies on how to cope with 
these issues are subject of future work. 

5.  Conclusions  
An active mass damper implementing the centrifugal forces produced by the rotation of two auxiliary 
masses for the vibration control of an oscillator with two translational degrees of freedom (TDOF) is 
presented. In a preferred mode of operation, both auxiliary masses rotate with the same nearly constant 
angular velocity in opposite directions producing a control force. By slightly varying the angular 
velocities, the direction of the control force can be changed. This allows for the vibration control in 
two TDOF. 

A control algorithm was derived by minimizing the work done by the control force on the TDOF 
oscillator. This ensures that the control force is used to dissipate vibration energy and, thus damp the 
vibrations. For an open-loop configuration, an analytical solution was found. For a closed-loop 
configuration, it was shown that the control algorithm is effective; however, two issues arise. They are 
presented in the discussion and are subject of future work. 
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