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Abstract. This paper addresses dynamic modelling and experiments on a passive vibration 

isolator for application in the space environment. The isolator is composed of a pretensioned 

plane cable net structure and a fluid damper in parallel. Firstly, the frequency response function 

(FRF) of a single cable is analysed according to the string theory, and the FRF synthesis method 

is adopted to establish a dynamic model of the plane cable net structure. Secondly, the equivalent 

damping coefficient of the fluid damper is analysed. Thirdly, experiments are carried out to 

compare the plane cable net structure, the fluid damper and the vibration isolator formed by the 

net and the damper, respectively. It is shown that the plane cable net structure can achieve 

substantial vibration attenuation but has a great amplification at its resonance frequency due to 

the light damping of cables. The damping effect of fluid damper is acceptable without taking the 

poor carrying capacity into consideration. Compared to the plane cable net structure and the fluid 

damper, the isolator has an acceptable resonance amplification as well as vibration attenuation. 

1. Introduction 

The term micro-vibration usually refers to low-level mechanical vibration or disturbance in the 

microgravity environment, typically occurring at frequency from less than 1 Hz up to 1 kHz[1]. 

Therefore, micro-vibration can be generated by mechanical system on board space crafts, such as 

reaction/ momentum wheel assemblies (R/MWAs), cryo-coolers, thrusters, solar array drive 

mechanisms and mobile mirrors, etc. Due to very tiny environmental damping in aerospace, micro-

vibration could persist for a long time. Obviously, vibration has long been serious problems to cause 

damage to the payloads or degrade its performance, which may be happened on-orbit.  

To meet the requirement of more strict vibration targets, both passive and active isolation solutions, 

damping enhancing measures as well as structures with inherent vibration isolation properties have been 

proposed [2-5]. The main disturbance source of on-orbit spacecraft is often mechanical spinning devices 

such as reaction and momentum wheel assemblies. Wheel assemblies are widely used in space 

technology to provide attitude control and momentum stability of a spacecraft. Many passive and active 

vibration isolation systems have been designed and researched to attenuate the vibrations on space crafts. 

Honeywell [6] developed a viscous-damped passive isolator for the Hubble Space Telescope to suppress 

the vibrations from RWAs. Vaillon and Philippe [7] designed and tested an elastomer-based passive 

vibration isolator. The isolator can be used to isolate the six degrees of freedom of a disturbance source 

with an attenuation performance exceeding 20dB above 25Hz and 40dB above 50Hz. Makiharaetal [8] 

studied a semi-active vibration isolator for momentum wheel assemblies, which is stable even when a 

control malfunction occurs. Kameshaetal [2] proposed a flexible low-frequency platform for RWAs 
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consisting of four folded beams, and the finite element method(FEM)was used to analyse its passive 

and active vibration isolation performance. Typical isolation systems for space optical telescopes, 

referred to as vibration isolation and suppression system and satellite ultra-quiet isolation technology 

experiment having been developed and utilized in spacecraft, can be seen in [9, 10] . The VISS and 

SUITE consisting of six struts in a hexapod configuration are used as the support of the sensitive 

payloads or the disturbance sources of on board spacecraft. Many other isolation systems are designed 

as support structures of payloads, which can isolate the micro-vibration transmitted from disturbance of 

the spacecraft to the sensitive payloads. The suppression of micro-vibration in the propagation path of 

disturbances has also been studied. 

For spacecraft applications, one most important factor that should be considered is the lightweight 

and cost effective. Also should bear in mind is the inherent on-orbit micro-vibration properties, which 

may hamper some measures of which the performance depends on the vibration amplitude of the host 

structure, such as dynamic vibration absorber as well as viscoelastic damping layers. As suggested in 

[11], dry friction is not desired in spacecraft applications thanks to the micro-amplitude vibration. On 

the other hand, the on-orbit vibration of space systems can be considered as linear vibration by 

neglecting the fretting wear and micro slip along the interfaces. 

In this paper, the coupled function between transversal vibration and longitudinal vibration is 

analysed. The tension variation caused by transversal vibration and longitudinal vibration is computed. 

The mechanical mobility method is developed to model the pretensioned plane cable net structure, which 

is composed of 8 cables. The performance of the proposed plane cable net structure is dependent only 

on the pretension force, making it a candidate for spacecraft micro-vibration isolation. Taking the small 

vibration amplitude of the cables into consideration, a fluid damper is designed and analysed. Besides, 

the force transmissibility of the plane cable net structure is tested. Experiments on the plane cable net 

structure, the fluid damper and the isolation device made up by the former two were carried out, 

respectively. Result shows that the plane cable net structure can achieve substantial vibration attenuation, 

with the resonance peak having a great amplification due to the lower damping coefficient of cables. 

While the damping effect of the fluid damper is acceptable without taking the poor carrying capacity 

into consideration. Compared to the plane cable net structure and the fluid damper, the isolator has an 

acceptable resonance amplification and vibration attenuation rate. 

2. Tension variation in string caused by vibrations 

A real string is vibrating in two transversal planes, and in the longitudinal direction as well. For 

simplicity, assuming that the string is vibrating in one plane, thus, one transversal and one longitudinal 

vibration is present. When a transversal displacement occurs on the string, the string elongates. This 

results in a force exciting a longitudinal wave in the string [12]. The longitudinal wave modulates the 

tension of the string, which influences the transversal vibration. Note that throughout this section losses 

and dispersion are not considered, since now coupling between the two polarizations is what concerned. 

0

 

Figure 1. The string element model. 
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The element of length dx  at equilibrium will have the length ds  after vibrating. where ( , )u u x t  

and  ( , )x t   are the transversal and longitudinal displacements of the string with respect to time t  

and space x , as depicted in figure 1. The initial tension of the string is 0T . the Deformation equation is 

        
2 22

, , ( , ) ( , )ds x dx t x t dx u x dx t u x t            (1) 

As dx  is infinitesimally small, the differences are substituted by differentials: 

    
2 2 2 2

2 2
1 1

u u
ds dx dx dx

x x x x

           
              

          
  (2) 

As the length of the element changes varies the tension    ,T T x t  of the string according to the 

Hooke’s law: 

 
0 1

ds
T T EA

dx

 
   

 
  (3) 

where E  is the Young’s modulus and A  is the cross-section area of the string. By substituting equation 

(2) into equation (3), the string tension can be approximated as: 

 

2

0

1

2

u
T T EA

x x

   
    

    

  (4) 

Due to the micro-vibration environment, the segment ds  is nearly parallel to the x  axis, and the 

longitudinal force on the segment ds  is the difference of the tension at the sides of the segment: 

 
 

22

2

/1

2
l

u xT
F dx EA dx

x x x

    
    

   
 

  (5) 

This force acts on a mass dx , where   is the mass per unit length. Accordingly, the longitudinal 

vibration is approximately described by the following equation: 

 
 

22 2

2 2

/1

2

u x
EA EA

t x x

 


   
 

  
  (6) 

The above formula shows that the string longitudinal displacement varies with transversal motion 

during vibration. The longitudinal vibration can also result in the string tension variation, which finally 

will act on the transversal string motion. The coupling of transversal and longitudinal string motion 

depends on the magnitude of vibration according to a square law. 

According to equation (4), influence of the string's longitudinal and transversal vibration on the   

string tension variation can be written as 

 

2

0

1

2

u
T T T EA EA

x x

  
      

  
  (7) 

A single string with both ends fixed, shown in figure 2, is now applied to study the tension variation 

caused by the transversal and longitudinal vibrations. According to the classical string vibration theory, 

when excited at h , the transversal displacement response of x is described by: 

  

Figure 2. Fixed-fixed string with a lateral harmonic force. 
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0

sin sin ( )
( , ) sin (0 )

sin

x l h
u x t F t x h

T l

 


 

 
     (8) 

where 

0

A

T


   and   is the density of the string. 

Simplified from equation (6) , the longitudinal vibration equation can be rewritten in the form: 

 
 

22 2

2 2

/

2

u xE E

t x x

 

 

   
   

  
  (9) 

The differential equation of transversal vibration determined from equation (8) is written as: 

 
 

22

2

0

/ sin ( )
sin 2 sin

sin

u x F

lT

l h
x t

x


  



     
     

  
  (10) 

Supposing that 
2 

E
a


, 

0

2

sin ( )

sin

F

T

l h
c

l






  
   

 
, the equation (9) can be simplified as: 

 

2 2
2 2

2 2
sin 2 sina c x t

t x

 
 

 
   

 
  (11) 

The boundary conditions are  

( ,0) ( ,0) 0tx x    

(0, ) ( , ) 0u t u l t   

With an assumption that 2( , ) sin 2 sinf x t c x t    ,  0 , 0x l t   ,the longitudinal 

displacement response function is calculated from equation (11) and takes the form: 

  
0

1

( , ) sin ( ) sin
3 3

t

n

n

n a n
x t f t d x

 
   





 
    

 
    (12) 

where    
0

2
, sin

l

n

n
f f x xdx

n a l


 


  . 

After simplification, the longitudinal vibration response function reduces to: 

 
1

3 3
( , ) sin ( ) cos cos 2

3 2 2 3
n n n

n

n n a
x t p x q t q t

n a n a

 
 

 





 
        

 
   (13) 

where 

sin(6 ) sin(6 ) 1 1 1

2 22
2 2 4 4

3 3 3 3

n n

c n n
p q

n nn a
n a n a

   

       

   
    

      
      
   

，   (14) 

Equation (8) and equation (13) are the transversal and longitudinal displacements of a string with 

both ends fixed when excited at h , with respect to time  t  and space  x . More attention should be paid 

to the tension variation. From equation (7), the tension variation caused by transversal vibration is 

expressed as: 

 

2
1

2
h

u
P EA

x


 


  (15) 

From equation (8), the partial differential equation of transversal vibration displacement has the 

following form: 
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0

sin ( )
cos

sin

u l h
x F

x T l






 
 


  (16) 

Substituting equation (16) into equation (15)，the tension variation caused by transversal vibration 

with respect to space x  can be written as: 

 

2

2

0

1 sin ( )
cos

2 sin
h

F l h
P EA x

T l






 
   

 
  (17) 

Specially, at the ends fixed  0x   , the tension variation is 

 
 

2

0
0

sin1

2 sin
h x

F l h
P EA

T l





 
   

 
  (18) 

Accordingly, the tension variation caused by longitudinal vibration can be obtained from equation 

(7) , 

 zP EA
x


 


  (19) 

The partial differential equation of longitudinal vibration displacement derived from equation (13) is 

written as: 

 
1

3 3 3
( ) cos cos 2

3 2 2 3

n
n n

n

p n n a
cos x q t q t

x n n a n a

  


  





  
          
   (20) 

Substituting equation (20) into equation (19) yields the tension variation function caused by 

longitudinal vibration with respect to space  x : 

 
1

3 3 3
cos ( ) cos cos 2

3 2 2 3

n
z n n

n

EAp n n a
P x q t q t

n n a n a

 


  





 
         

 
   (21) 

Setting that 

 1

3 3
cos

3 2

nEAp n
x

n n a



 
      (22) 

  

 2

3
cos

3

n
n

EAp n
q x

n




      (23) 

 3

3 3
( ) cos

2 3

n
n

EAp n
q x

n n a



 
       (24) 

the equation (21) can be simplified as 

 
1 3 2

1 1 1

cos cos 2
3

z

n n n

n a
P t t




  

  

             (25) 

Equation (25) is the tension variation caused by longitudinal vibration displacement, with respect to 

time t  and space x . The first two items on the right side of equation (25) denote the transient vibration 

or free vibration, which is caused by initial conditions and will be decayed soon in case of damping.  So 

in the following part, the effects of the first two items are ignored. The third item is the steady vibration 

response under external load, which is also the focus of attention. 

A both ends fixed string has the following properties: string length 0.3l m ,string cross-section 

area  
2 20.0015A m  , Young’s modulus 111.4 10E Pa  , the pretension 0 100T N . A unit 

harmonic force is applied at the middle of the string,  0.15h m . The magnitude of tension variation, 

0h x
P


  and 2 0x

 , are shown in figure (3). 
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Figure 3.  The amplitude of the tension variation 

caused by transversal and longitudinal vibration. 

Compared to the tension variation caused by transversal vibration, the amplitude of the 2  is much 

less. This can be verified the classical string theory, in which the longitudinal vibration of string is 

ignored.  

T0

Fsinwt

T0

 

Figure 4.  The pretensioned plane 

cable net structure composed of 8 

strings. 

The plane cable net structure is composed of a plurality of strings with a preload, as shown in figure 

4. And the payload is applied to the four intersection chords in the centre of the plane cable net structure. 

Then the vibration can be transmitted to the fixed points by tension variation of the strings. In this 

process, the vibration energy is absorbed and released by the string periodically. The mechanical 

admittance method proposed by Jetmundsen [13] is adopted in the modelling. The string vibration 

response equations are used to set up the plane cable net structure frequency response functions (FRF). 

Finally, after coupled with the mass, the FRF of the whole system can be obtained. 

Based on the dynamics of single string, a plane cable net model consisting of 8 strings is established. 

The vibration and force transmissibility of the plane cable net model are analysed. The string length 

0.3l m ,string cross-section area  
2 20.0015A m  , Young’s modulus 111.4 10E Pa  . A unit 
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excitation force is applied at the middle of the mass. The response curves under different pretensions 

are shown in figure 5. The greater the preload, the greater the first order natural frequency of the string. 

The load-bearing stiffness of the plane cable net structure will increase with the pretension of the string. 

Still, the displacement response shown in figure 5(a) is similar to the frequency response characteristics 

of spring-mass system. Although the dynamics of a single string is very complicated, the direct response 

of the mass in the centre of the cable net is much easier to understand. 

 

 

 

(a)  (b) 

Figure 5.  (a) is the direct displacement frequency response of the mass and (b) is the tension variation 

at the fixed ends of the bearing string and non-bearing string.  

3. The fluid damper 

In the micro-vibration situation, the vibration amplitude is small. And the relative displacement among 

strings is small, which results in that just a little vibration energy can be dissipated by friction. In order 

to achieve a better vibration attenuation, it’s essential to add a damping device in the plane cable net 

structure. As shown in figure 6 (a), the fluid damper is made up by two bellows. When an external force 

is applied to the upper surface of the fluid damper, the lower bellows will shrink, which leads to the 

fluid flowing upward. The bellows are flexible, which can help the fluid move back when the external 

force is changed or removed. The damping is mainly generated by the condensation effect when the 

fluid flowing through the hole.  

f
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(a)  (b) 

Figure 6. (a) is schematic diagram of fluid damping and (b) shows the  

dimensions of the bellow. 

The empirical formula for the axial stiffness of bellows is [14]:  
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where E  is the Young’s modulus. Shown in figure 6 (b), n  is the number of layers of the bellows; r  is 

the radius of the fillet; mD  is the average diameter of bellows,   /2mD D d  , where D  and d  are 

the outer and inner diameter, respectively; 0h is the theoretical thickness of the bellows’ wall; C  is the 

shape correction factor, which can be written as: 

  

1
3 2

0.046 0.144 0.287 0.082
r r r

C
H H H



    
       

     

 (27) 

As shown in figure 7, there is a 3/4  ring hole on the piston, which the fluid can flow through. Energy 

dissipation is mainly caused by the contraction before outlet and expanding after outlet. 
1 2

 

Figure 7.  Cross Section diagram of damper and piston 

1v , 1p are the velocity and pressure at cross section 1; 
2v ,

2p are the velocity and pressure at cross 

section 2;
0v  is the velocity when the fluid flow in the ring hole；the equivalent inner diameter of the 

cavity is D ;
1d and 

2d  are the inner diameter and outer diameter of the ring hole, respectively；the 

fluid density is  ; the acceleration of gravity is g . 

According to the law of mass conservation, the Bernoulli equation is given by 

 

2 2

1 1 2 2 2 2

2 2
w

p v p v
h

g g g g

 

 
      (28) 

wh is the loss coefficient due to shrinkage effect: 

  

2

0

2
w

v
h

g
   (29) 

where  is the resistance loss coefficient. 

Assuming 
1 2 1   , and taking the incompressible flow into account, 

1 2v v , the pressure 

difference between two sides of the ring hole is obtained: 

 

2

0
1 2

2

v
p p p


      (30) 

According to the continuity of flow,  

 
1 0 0v A v A   (31) 

where 
2 /4A D  and  2 2

0 2 13 /16A d d   are the inner cross section of the cavity and cross 

section of the ring hole, respectively. The damping force can be defined as: 

 

3
2

2

02

A
F p A v

A


      (32) 

Substituting A and
0A into equation (32), one can write: 
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6
2 2

1 12
2 2

2 1

2

9
h

D
F p A v c v

d d

 
    


  (33) 

The displacement function of a harmonic motion with frequency and amplitude  X  is expressed as: 

    sinx t X t  (34) 

The equivalent damping force can be written as:  

  coseq eqF c v c X t    (35) 

where eqc is the equivalent linear damping coefficient. The energy dissipated by the equivalent damping 

force in one cycle is derived as follows: 

  
2 / 2 / 2 2

0 0
coseq eqW Fdx c X t dt c X

   

         (36) 

And the energy dissipated by the damping force derived by equation (33) is given as:   

  
2 3

2 / 2 / 3

0 0

8
cos

3

h
h

X c
W Fdx c X t dt

    
        (37) 

Solving equation (33) and equation (36) , the equivalent linear damping coefficient is obtained  
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3

h
eq

Xc
c




  (38) 

By looking at  equation (38) , the conclusion is that the equivalent linear damping coefficient is not 

a constant. It is not only related to the structural parameters of the damping holes, but also with the 

amplitude and frequency of the excitation force.  

4. Experiments 
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Figure 8.  Experiment on tension variation of the plane cable net structure. 

The tension variation is tested to get the real frequency response of the plane cable net structure, which 

is used to verify the model set up in this paper. As shown in figure 8, the plane cable net structure is 

composed of 8 cables, with a mass coupled with the central four intersections. The cables, which are 

directly connected with the mass, are defined as ‘bearing strings’. The others, which are not directly 

connected with the cables, are called ‘non-bearing strings’. A static force sensor and a dynamic force 

sensor are placed on the two ends of cable. The static force sensor is used to demarcate the pretension 

of the cable and the dynamic force sensor is used to obtain the tension variation in the course of vibration, 

as shown in table 1. The exciter is mounted on the foundation support, with a random excitation force 

applied at the centre of the mass. A dynamic force sensor is attached between the exciter and the mass, 

which is used to measure the force that the exciter transmitted to the mass. Before the experiment, the 

pretension of the eight cables is adjusted to ensure that they have the same initial preload. 
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Table 1. Sensor parameters and functions. 

 The sensor type Sensitivity Utility 

1~8 Static force sensor 9.67~9.83 /mV N  Get the initial tension of the table  

9~16 dynamic force sensor 1000 /mV N  Get the dynamic tension of the table 

17 dynamic force sensor 100 /mV N  Get the dynamic excitation force of the exciter 

The pretension of the cables is about 300N , with error less than 2%. The dynamic tension variation 

of cables at the ends are measured, and the frequency response curves are shown in figure 9. The 

horizontal coordinate is frequency and the vertical coordinate is the ratio of the dynamic tension 

variation amplitude and the excitation force amplitude, namely the force transmission characteristic. 

The dynamic force sensor 15 shows the tension variation of a ‘bearing strings’ and the dynamic force 

sensor presents the tension variation of a ‘non-bearing strings’. The first order natural frequency is about 

21.79 Hz, which is the translation frequency of the mass. The second order to the forth order natural 

frequency are 62.57 Hz, 119.29 Hz and 179.37 Hz, with multiple relations among them. The amplitude 

of the tension varying of the ‘non-bearing strings’ is smaller than the amplitude of the ‘bearing strings’, 

which is verified by computation and shown in figure 5.  

 

Figure 9.  Tension variation of the plane cable net structure. 

In the experiment, the suspension method is used to simulate the space weightlessness environment. 

The fluid damper, the plane cable net structure and the isolator composed of the former two are used as 

the isolation device between the vibration source and the payload. The test procedure is shown in figure 

10. The exciter applies a random force on the mass, and the vibration (displacement, velocity and 

acceleration included) is transmitted to the other mass by the isolator between them. The acceleration 

data will be obtained by the two acceleration sensor attached to the two masses. The real graph of 

experimental test is shown is figure 11. The two masses are both 6 Kg . The acceleration transmissibility 

of the isolator is obtained by the ratio of the two accelerations of the two mass, with a random excitation 

in the range of 0 ~ 250 Hz.  
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Figure 10. The testing procedure. 

 

 

 

 

 

(a)  (b)  (c) 

Figure 11.  Real graph of experimental test: (a) is the fluid damper; (b) is the plane cable 

net structure and (c) is the isolator composed of the former two in parallel. 

 

Figure 12.  The acceleration transmissibility of different isolation device. 

As shown in figure 12, results show that the isolation effect of the plane cable net structure is 

acceptable, and the vibration attenuation rate is about -40 dB/dec in the isolation zone. However, the 

resonance amplification is high due to the low damping factor of the cables. The fluid damper has a 

lower resonance amplification, with disadvantages of lower vibration attenuation rate and lower capacity. 

When the plane cable net structure utilized in parallel with the fluid damper, the resonance peak is 

significantly decreased and the vibration attenuation rate is close to -38 dB/dec. 

5. Conclusions 

The coupled functions of the transversal and longitudinal vibrations of strings are obtained from the 

differential equations of motion. According to Hooke's law, the influence of the transversal vibration 
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and the longitudinal vibration on the string tension is derived. Results show that the latter is much 

smaller than the former, which is always being ignored in classical string theory. 

Based on the mechanical admittance method, a plane cable net structure composed of 8 strings is 

developed, with tension variation being computed and tested. The vibration of the mass mounted in the 

centre of the plane cable net structure can be transmitted to the foundations with the strings’ tension 

variation. The displacement response of the mass is very similar to the frequency response of the spring 

oscillator, with the possibility of being used as a vibration isolator. To avoid the small damping 

coefficient of the plane cable net structure, a fluid damper made up by bellows is introduced. 

Experiments on the plane cable net structure, the fluid damper and the isolator composed by the 

former two are carried out, respectively. Results show that the isolator has an acceptable resonance 

amplification and vibration attenuation rate, when compared to the plane cable net structure and the 

fluid damper. 
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