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Abstract. In the dynamically substructured system (DSS) testing technique, a controller that 

synchronises the responses of physical and numerical substructures is an essential part of the 

testing scheme to ensure synchronisation fidelity. This paper discusses a novel approach that 

generates a two-degree-of-freedom (2-DOF) output feedback controller for multi-input, multi-

output (MIMO) DSS via control synthesis. This 2-DOF output feedback controller yields 

robust stability and robust performance of the physical/numerical substructure synchronisation 

and enables controller tuning in the frequency domain. Simulation and experimental results 

have been shown to validate the efficacy of the method. 

1.  Introduction 

The dynamically substructured system (DSS) approach [1] is a testing technique that combines full-

size physical components (physical substructure) with a real-time numerical simulation of the 

remaining components (numerical substructure) in order to replicate the dynamical behaviour of a 

complete (or emulated) system. One of the main advantages of this technique is that the necessity and 

associated expense of constructing a complete physical system is avoidable. In addition, the full-size 

physical components will often contain unknown and nonlinear dynamics that would otherwise be 

difficult to model with sufficient accuracy. The concept of this type of testing was first proposed as 

hardware-in-the-loop simulation (HiLS) and hybrid simulation (HS), which have been implemented in 

various fields including the railway industry [2, 3, 4]. Whatever the method that is ultimately used, 

high-quality control is required to synchronise the responses of the physical and numerical systems at 

the interfaces between the two systems, in order to ensure the fidelity of the tests. In this respect, both 

the HiLS and HS approaches have been shown to offer poor stability and robustness, especially when 

the emulated system has low damping and/or pure-delay components [5]. 

The methodology of DSS and its control synthesis was first proposed by Stoten and Hyde [1], and 

was later extended via a state-space approach [6]. It has been shown that DSS provides significant 

stability and robustness compared with the more conventional approaches of HiLS and HS [5, 7]. A 

principle of the existing DSS approach is to design feedforward (FF) and feedback (FB) controllers 

that will realise the synchronisation objective. In this approach, the FF controller is partly formed via 

the inverse of the actuator dynamics in the physical substructure. Hence, it can be difficult to derive 

the FF controller for DSS actuator systems that possess high relative degree, multi-input, multi-output 
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(MIMO) dynamics or non-minimum phase dynamics. In addition, there is no requirement per se for a 

systematic design process for the FB controller (and a state observer, if necessary) to achieve the 

required synchronisation performance. Thus, the new /H   control synthesis method for DSS 

(called /H  -DSS), which is presented in this paper, is primarily motivated by these observations. 

The novelty and main advantage of this new method is that it is unnecessary to design the FF 

controller and the state observer explicitly; c.f. [6]. Instead, the FF controller and the state observer are 

automatically synthesised by integrating the FB controller into a single system that is derived by 

/H   control synthesis [8], in order to satisfy the main objective of synchronised substructure 

responses. 

The rest of this paper is structured as follows. In §2, the /H  -DSS approach is described in 

detail, where advantages of the method and its robust stability/performance are presented. In order to 

validate the efficacy of the method, experimental studies are presented in §3. Finally, the main 

conclusions of this work are presented in §4, including a brief description of an application to a 

railway testing facility, as a part of our future work in this field. 

2.  Synthesised H∞/μ control design for DSS 

2.1.  Structure of the conventional DSS 

A block representation of the state-space-based DSS is shown in Figure 1. Here, the physical 

substructure, P , typically consists of tested specimens, sensors and actuators. The numerical 

substructure, N , is usually a real-time simulation which computes the behaviour of the remaining 

components. The system excitation, d, is an external input to the DSS,  ,N Pz z  are the outputs of 

{ N , P }, y  is the interaction constraint between the two substructures and the synchronising 

control signal, u , ensures that the synchronising error, z , is driven towards zero under all 

circumstances. 

In the following developments, P  and N are assumed to be linear systems, and the signals 

 , , , , ,N Pd u y z z z  are, in general, vector quantities. 

 

 

Figure 1.  State-space-based DSS. 

 

According to existing DSS theory, the controller consists of a FF term, dK , and a FB term, eK , as 

depicted in Figure 2. As discussed in §1, a proper realisation of the FF controller can be difficult to 

achieve in some cases. In order to address this issue and to employ the benefits of /H   control 

synthesis, P / N  and dK / eK  are combined into a single dynamic system, as shown in §2.2. 
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Figure 2.  Structure of the standard DSS controller [1]. 

2.2.  The generalised plant for DSS 

The first step in the new approach is to transform the block representation in Figure 2 into the form 

shown in Figure 3, where C  is referred to as the generalised plant in /H   control theory. Note that 

the controller, K , has the form of a two-degree-of-freedom (2-DOF) output-feedback controller. 

 

Figure 3. Generalised plant of DSS. 

 

C  can be expressed as 
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Once the generalised plant is obtained, the existing /H   control synthesis can be applied to 

derive the controller K , thus incorporating its advantageous features of frequency shaping, stability 

and robustness performance. Introducing an appropriately chosen weighting function, the following 

performance measures can then be attributed to the DSS design: 

 Robust stability 

 Nominal performance 

 Robust performance 
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Here, the term ‘robust’ implies that the desired performance characteristics are ensured for all the 

possible uncertainties that are estimated within the design process. In the following sections, each of 

these performance characteristics are described in more detail. 

2.2.1.  Robust stability. Introducing the additive model uncertainty and perturbed system C , which 

can be expressed using transfer function matrices as follows: 

        , 1C Cs s s W s 
      (3) 

where  W s  is a weighting function that determines the frequency characteristics of the uncertainty 

and  s  is a normalised and stable perturbation. The corresponding perturbed DSS is shown in 

Figure 4. 

 

 

Figure 4.  Perturbed DSS (additive perturbation). 

 

In this case, according to the small gain theorem [8], the perturbed DSS is robustly stable for any 

 s  if and only if 

 , 1z wM   
  (4) 

where  ,z wM s   is the transfer function matrix from w  to z in Figure 4. Alternatively, when the 

uncertainty within the system C  is modelled as a multiplicative term, i.e.: 

         1 , 1C Cs s s W s


      (5) 

the perturbed DSS is as shown in Figure 5. Again, the perturbed DSS is robustly stable if and only if 

 , 1z wM   
  (6) 

where  ,z wM s   is the redefined transfer function matrix from w  to z  in Figure 5. The   iteration 

of H -synthesis [9] enables the computation of a controller K  that minimises ,z wM   
 so that the 

conditions in (4) or (6) can be satisfied.  
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Figure 5.  Perturbed DSS (multiplicative perturbation). 

2.2.2.  Nominal performance. Consider the DSS structure depicted in Figure 6. Choosing an 

appropriate weighting function,  zW s , defines the nominal performance as ,z dM


, where  ,z dM s  

is the transfer function matrix from d  to z  in Figure 6. 

 

 
 

Figure 6.  Nominal performance of DSS. 

 

Again, the   iteration can be used to minimise ,z dM


, where the minimum value gives the 

nominal performance in the sense of an H  norm. In addition, the condition ,z dM 

 , for a certain 

positive constant,  , equates to the stability and robustness of the closed-loop system in Figure 7 in 

the presence of fictitious perturbation, f , such that 1/f 


  . This observation aids the 

discussion on robust performance in the next section. 

 

 
 

Figure 7. Equivalent expression of nominal performance. 

2.2.3.  Robust performance. Now consider the DSS structure shown in Figure 8, where the controlled 

plant is modelled as an additive uncertain model set. Using the development within the previous 
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if 

 , 1zz dwM   
  (8) 

where  ,z dM s  is the redefined transfer function matrix from 𝑑  to z  and  ,zz dwM s   is the transfer 

function matrix from  ,d w  to  ,z z  of the closed system in Figure 8.  

 

 
 

Figure 8.  Robust performance of the DSS. 

 

Introducing a fictitious perturbation, , 1f f


   , the robust performance in (7) is identical to the 

robust stability of the closed-loop system shown in Figure 9. 

 

 

Figure 9.  Equivalent expression of robust performance. 
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Note that (9) only constitutes a sufficient condition to achieve robust performance. Hence a controller, 

K , that satisfies (9) can be quite conservative, a result induced by neglecting the structure of  P s . 
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condition of the robust performance of the closed system in Figure 8 can be expressed as the following 

necessary and sufficient condition [9]: 

   ,sup 1P zz dwM j


   



  (10) 

where  P  is a structured singular value. The D-K iteration algorithm within the  -synthesis 

procedure enables us to compute a controller K  that minimises   ,sup P zz dwM j      , so that it 

satisfies the condition in (10). Such a controller ensures robust performance in (7) and to illustrate this 

feature, an experimental verification was conducted, details of which are given in §3. The overall 

scheme is shown in the block diagram of Figure 10. 

 

 

Figure 10.  Robust performance of DSS in a practical situation. 
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 (11) 

and define the transfer function matrix  ,zuz dvwM s   relating  , ,d v w to  , ,z u z  in Figure 10. 

Hence, under the assumption that the following condition is satisfied: 

   ,sup 1P zuz dvwM j


   



  (12) 

the system is robustly stable. In addition, the following robust performance: 

  , 1, s.t. 1zu dvM s
 
     (13) 

is ensured, where  ,zu dvM s  is the transfer function matrix from  ,d v  to  ,z u  of the closed-loop 

system in Figure 10. 

Using this approach, the /H  -DSS scheme was further improved in terms of its practical 

application. In particular, if there is a priori knowledge of the model uncertainty and perturbations (i.e. 

observation noise and external disturbances) within the DSS, a controller can be designed that ensures 

robust stability and robust performance. In addition, degradation of control performance can be 

analysed when test specimens, actuators or numerical elements are changed. This can be of significant 

practical benefit, since additional system identification and control design can be avoided if 

satisfactory control performance can be guaranteed under such circumstances. 

 

 

C

K

d

,y du






W

z
zW

z

vW
vv

uW
u





z w

MOVIC2016 & RASD2016 IOP Publishing
Journal of Physics: Conference Series 744 (2016) 012205 doi:10.1088/1742-6596/744/1/012205

7



 

 

 

 

 

 

3.  Experimental study 

In order to verify the effectiveness of the new approach to DSS controller design, the following 

experiment was conducted. Firstly, the DSS structure and control specifications were defined. 

Secondly, system identification of the physical substructure was conducted and as a result, a DSS 

controller was designed via the new method. Finally, the desired performance specification was 

confirmed to be satisfied in the experiments. 

3.1.  Test rig and DSS specification 

Figure 11(a) shows the electrical actuator for the experiment, consisting of an AC servo motor and a 

ball screw. As depicted in Figure 11(b), the servo driver enables the control of the motor velocity by a 

configurable in-built proportional-integral (PI) controller. In addition, a strain gauge was attached to a 

supporting rod of the actuator in order to measure the force that is applied by the external environment 

to the actuator. 

   
(a)                                                                            (b) 

 

Figure 11.   (a) AC actuator;  (b) block schematic diagram of the electric actuator. 

 

A schematic representation of the corresponding DSS test is shown in Figure 12. Here, the 

numerical substructure consists of a simple mass–spring–damper system, which is to be emulated by 

the actuator. The system excitation d  is supposed to be the force that is measured by the strain gauge. 

The physical substructure, which is the actuator in this test, is supposed to synchronise both the 

outputs of the two substructures. In doing so, the actuator can behave as if it was a pre-defined system 

in the numerical substructure, driven by the system excitation. 

 

 
Figure 12.  DSS structure of the test. 

3.2.  System identification and control design 

System identification of the actuator was conducted via the transfer function estimation method using 

a uniformly distributed random input, ( u  in Figure 12), resulting in the transfer function gain from u  
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to Pz  as shown in Figure 13(a). This indicates that the transfer function has approximately the 

characteristics of an integrator in the low frequency range (the corresponding phase was also 

approximately -90° over this range) and can be modelled as:  

  
12

P s
s

  (14) 

The associated uncertainty can be quantified as the following additive term: 

        , 1P Ps s s W s 
      (15) 

where  W s  can be chosen to cover the likely uncertainty over the entire frequency range, thus: 

  
   

   

4

4 4
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s s
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 
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 
 (16) 

The gain plot of  W s  and the additive error between the measured and identified transfer gain of P  

are shown in Figure 13(b).  

 
 

(a)                                                                          (b) 

 

Figure 13.  System identification results for the physical substructure. 

 

As a consequence, the control specification could be defined by the following weighting function: 

  
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Equation (17) demands that the transfer function gain    /z s d s  is less than  1/ zW s  over all 

frequencies. 

Using the defined control specification and uncertain model set, the DSS generalised plant is 

shown in Figure 14, where the system, C , is identical to the physical plant, P . Since the numerical 

plant has no model uncertainty, it is preferable to assign P  and N  separately; in this case, N  is 

assigned as NW  in Figure 14. 

 

 

 W s  
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Figure 14.  Generalised plant of the DSS. 

 

Choosing 0.5m  kg, 76.0 10k   N/m and 46.0 10c   Ns/m, NW , which is identical to N , can now 

be expressed as: 

  
2 4 7

1

0.5 6.0 10 6.0 10
NW s

s s


   
 (18) 

and the weighting functions that specify input and observation noise processes were chosen as: 

    8 810 , 5.6 10u wW s W s     (19) 

Using the D-K iteration, a controller was found that satisfied the following condition on the structured 

singular value: 

   1 2,sup 1P zz dw w wM j


   



  (20) 

where  1 2,zz dw w wM s   is the transfer function matrix relating  1 2, , ,d w w w  to  ,z z  in Figure 14 

and P  is the appropriately redefined matrix in a manner similar to (11). As a result, the designed 

control performance is theoretically guaranteed for all possible models out of the uncertain model set, 

the quantified input and the observation noise. This theoretical assertion will be seen to be supported 

by the experimental results in the next section. 

3.3.  Experimental results 

In order to confirm the designated control performance, the following experiment was conducted. 

Instead of applying the actual force to the actuator, pre-recorded uniform random signal was applied as 

an external disturbance. The corresponding test result is shown in Figure 15. The transfer gain 

between the external disturbance and the synchronising error is displayed in Figure 15(a), where the 

designed synchronising performance was surely satisfied. The time series of the external disturbance, 

both outputs of the numerical/physical substructures and the synchronising error are depicted in Figure 

15(b), (c) and (d), respectively. 
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Figure 15.  DSS test results 

(a) transfer function gain of /z d ; (b) disturbance d ; (c) substructure outputs, { ,N Pz z }; (d) 

synchronisation error, z . 

 

4.  Conclusions and further work 

In this paper, a systematic state-space approach was provided for the design of a 2-DOF output-

feedback controller for DSS. Using this approach, the explicit derivation of a FF controller and a state 

observer was avoided, by utilising a trade-off between certain practical requirements such as the 

synchronising performance and the input limitations of actuators. The derived controller also 

guaranteed robust performance via the use of standard results from /H   control theory. In addition, 

experimental work validated the efficacy of the developed method. Further work will include an 

application to a railway testing facility at Railway Technical Research Institute (RTRI, Tokyo), brief 

details being given in the following section. 

4.1.  Application for railway testing facility (rapid prototyping bogie) 

In order to apply the DSS technique and the proposed method of design into a more practical system, a 

railway testing vehicle, called as a rapid prototyping bogie (RPB, [10]) will be examined. In the field 

of railway vehicle dynamics, the running gear - often referred to as a bogie - plays a significant role in 

ensuring safety and passenger comfort in railway vehicles [11]. The RPB has several electric actuators 

that emulate vital railway components (e.g. rubber bush, oil damper, active controlled device, etc.) 

instead of installing each passive component (Figure 16). This enables us to accelerate the efficiency 

of the bogie designing process, optimising each parameter employing the RPB as a “running test bed”. 

 1/ zW s  

(a) 

(b) 

(c) 

(d) 
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The concept of the RPB problem and the corresponding DSS design is quite similar to what is 

described in §3, where the actuator now emulates a certain component that is driven by an external 

force. The actuators installed in the RPB also have strain gauges, which measure an external force to 

drive the numerical substructures. 

 
Figure 16.  Rapid prototyping bogie; actuators shown in red and the listed dynamics are emulated by 

the corresponding actuators. 
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