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Abstract. Previously, a coupled, two-dimensional structural-acoustic ring model was 

constructed to simulate the dynamic and acoustical behavior of pneumatic tires.  Analytical 

forced solutions were obtained and were experimentally verified through laser velocimeter 

measurement made using automobile tires.  However, the two-dimensional ring model is 

incapable of representing higher order, in-plane modal motion in either the circumferential or 

axial directions.  Therefore, in this paper, a three-dimensional pressurized circular shell model 

is proposed to study the in-plane shearing motion and the effect of different forcing conditions. 

Closed form analytical solutions were obtained for both free and forced vibrations of the shell 

under simply supported boundary conditions. Dispersion relations were calculated and different 

wave types were identified by their different speeds. Shell surface mobility results under various 

input distributions were also studied and compared. Spatial Fourier series decompositions were 

also performed on the spatial mobility results to give the forced dispersion relations, which 

illustrate clearly the influence of input force spatial distribution. Such a model has practical 

application in identifying the sources of noise and vibration problems in automotive tires.   

1.  Introduction 

Many analytical ring models [1-3] have been developed to simulate tire vibrations and some can also 

allow for coupling of the air cavity with the structural vibration to predict the acoustical resonances [4]. 

These ring models can be effective in predicting the radial and circumferential motions of the tire; 

however they cannot represent the transverse modal motion in the tire axial direction and thus are 

insufficient to account for tire-width-related effects. Such width-related behavior may be an important 

factor in influencing tire acoustic performance. Thus, shell models have been applied to represent tire 

vibration more completely. A free and forced vibration analysis of a rotating shell by Kim and Bolton 

[5] revealed the wave types traveling in the thin shell and the effect of rotation. Molisani el al. [6] 

proposed a simple coupled tire/cavity shell model which made modal analysis possible. Kim and Bolton 

[7] were also the first to use the traveling wave finite element method to calculate the dispersion relations 

in tire structures. Later, Waki at al. further developed the traveling wave finite element method and they 

were able to calculate the forced response of a tire [8]. Sabiniarz and Kropp [9] used their finite element 

tire model to show that in-plane shearing motion could occur in the tire treadband due to tire sidewall 

vibration. This later motion is of particular interest since its cut on frequency falls within the frequency 

range where the tire horn effect is most prominent and so it could account for a significant portion of 

tire-related vehicle pass by noise.   

Accurate vibration simulation results can provide structural modal information, which can be helpful 

in the identification of the mechanism of the above-mentioned in-plane shearing motion, for example. 
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The forced vibration response can also give the surface velocity of the structure and thus may provide 

input for tire noise radiation predictions. With the intention of describing higher order in-plane motions 

in tire treadbands, the transverse and in-plane motion across the width direction in a simplified finite-

width cylindrical shell is investigated here. But note that due to the material property variance, the 

resonance frequency and response amplitude may not precisely match the measurement results from real 

tires. Also, the forced response to inputs having different spatial distributions, i.e., point excitation, line 

excitation and area excitation, are compared to see how the shell model response depends on input force 

shape and how various wave types are enhanced or suppressed by changing the spatial distribution of 

the input force.  

2.  Model description 

Here, a thin shell model was used to investigate the in-plane shearing phenomenon that has been 

observed in tire treadbands and sidewalls. Also, different input excitations were applied on the shell to 

study how the shell response depends on various excitation conditions.  

 
Figure 1. Simply supported shell. 

 

The cylindrical shell is as shown in Figure 1 with radius R and width L. Here ur, uθ and ux are the 

displacements of the shell in the radial, tangential and axial directions, respectively. Internal pressure, 

P, is applied to the inner surface of the cylindrical shell which has the effect of stiffening it in the 

circumferential direction. External point forces can be applied anywhere on the shell and the position 

and quantity of these forces can be modified to simulate point, line and area inputs. 

The two edges of the cylindrical shell are simply supported in this case, which means that both radial 

and tangential motions at the edges are constrained to be zero; the axial motion, however, is 

unconstrained. Typically, the tire tread thickness-to-radius ratio is less than 0.1, which, according to 

Kang and Riedel's work [10], makes it reasonable to assume that the neutral plane coincides with the 

centroidal plane of the shell. So, thin shell theory is used here, where displacements in the tangential 

and axial direction vary linearly with thickness. The radial shear strain in this thin shell model is also 

neglected since shear waves in tires are not easily excited and have a very small influence on tire 

vibration response at frequencies below 4 KHz [11]. 

3.  Free vibration 

The free vibration of the pressurized thin cylindrical shell model is first calculated, which then provides 

the necessary modal information for forced response calculations. By following Soedel’s thin shell 

theory [12], Love’s equations give 
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where ρ is the density of the shell, h is the thickness of the shell and the linear differential operators 

are 
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among which, υ is the Poisson’s ratio, D is the bending stiffness calculated as Eh3[12(1- υ2)]-1, K is the 

membrane stiffness calculated as Eh, E is the Young’s modulus, qx, qθ, qr are distributed forces in each 

direction and finally, Nθθ
r = PR is the in-plane force that results from the inflation pressure, P. 

 

Table 1. Shell material properties and dimensions. 

Parameter Value Parameter Value 

Radius R 0.332 [m] Young’s modulus E 4.8×108 [Pa] 

Width L 0.215 [m] Poisson’s ratio υ 0.45 

Thickness h 0.008 [m] Hysteretic damping η  0.3 

Density ρ 1200 [kg∙m-3] Inflation pressure P  2.06×105 [Pa] 

 

Since the cylindrical shell is simply-supported, the following boundary conditions apply:  

(0, ) 0, ( , ) 0 r ru u L                                                ( 7a, 7b ) 

(0, ) 0, ( , ) 0 u u L                                                 ( 8a, 8b ) 

(0, ) 0, ( , ) 0 xx xxM M L                                          ( 9a, 9b ) 

(0, ) 0, ( , ) 0 xx xxN N L                                        ( 10a, 10b ) 

where Mxx is the axial moment and Nxx is the axial shear force. The solutions that satisfy these boundary 

conditions have the form  
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where km is the wavenumber in the width direction and kn is the wavenumber in the circumferential 

direction. Next, those solutions are substituted into the equations of motion to obtain  
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where the kij’s are constants containing km, kn and other material-related factors. By fixing the 

wavenumbers km and kn, and then equating the determinant of Equation 14 to zero, it is possible to solve 

for the natural frequency associated with a given (m,n) mode. For each (m,n) mode, there will be 3 pairs 

of natural frequencies, representing a circumferential transverse wave, an axial longitudinal wave and a 

circumferential longitudinal wave.  Given the calculated natural frequencies, it is also possible to work 

out the amplitude ratio between the different displacements. That is, the displacement of each mode can 

be expressed as  
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4.  Forced vibration 

Once the natural frequencies are obtained, the free vibration modes can be combined with appropriate 

weighting to represent the total forced response. When following Soedel’s [12] procedure, a modal 

participation factor ηmni is added to each mode: the result is 
1 2

2
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N N

mni mni mni mni i

m n

h h u q                                                ( 16 ) 

where i = 1, 2, 3 denotes the modes in the axial, circumferential and radial directions, respectively. Here 

N1 and N2 represent the total numbers of modes considered in practice (which, in theory, go to infinity). 

We can adjust the values of N1 and N2 depending on the frequency range of interest. Next, each equation 

is multiplied by upqi on both sides to obtain 
1 2

2
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and both sides of the above equation are integrated over the entire shell surface. Due to the orthogonality 

of the modes, terms not satisfying p = m, q = n vanish, thus causing the integral equations to reduce to 

summations. Finally, the integrated equations for i = 1,2,3 can be added to calculate the modal 

participation factor as follows: 
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Thus the modal participation factor can be easily calculated in this case. Then the modal force is: 
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Note that the Young’s modulus used in the calculation contains a hysteretic damping factor, which 

causes the natural frequencies to be complex. The latter ensures that the response of the shell remains 

finite when driven at one of the natural frequencies.  

4.1.  Modal summation for harmonic point excitation 

With the obtained modal participation factor, the previously defined mode shape Equations 15 can be 

combined to calculate the resultant forced-displacement response in the axial, circumferential and radial 
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directions. However, instead of choosing an arbitrary phase, ϕ, in the assumed solutions (as in Equations 

11 to 13), the solutions were expressed in the form of two orthogonal modes: i.e.,  
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In the end, the solution should include components from both orthogonal modes, so the solutions are 

written as:  
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4.2.  Generic excitation 

To force the system, multiple point excitations at arbitrary angles were used to represent a generic 

excitation case which could be reduced easily to a single point input or a line input. Many point 

excitations were used to simulate an area excitation by controlling the number of excitation points and 

the space between these points. In that case, 
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where FN1 is the number of excitation points along the axial direction and FN2 is the number of 

excitation points along the circumferential direction, Frpq is the radial force amplitude at  (xp,θq) and Fθpq 

is the tangential force amplitude at (xp,θq). Although the input area is rectangular, different force 

amplitudes can be specified at each specific point location to create the required input distribution shape. 

For simplicity, the calculations in this paper were based on uniform force amplitudes applied at various 

excitation locations; only the input locations and number of excitation points were modified.  

These excitation forces need to be substituted back into Equation 19 to calculate the modal forces. 

The Dirac delta function alters the integral to a summation over the total excitation points, which finally 

gives 
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These modal forces then allow us to calculate the modal participation factors for different excitation 

conditions. Here, the single point excitation, axial line excitation and rectangular area excitation were 

considered.  
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5.  Results 

Both free vibration results and the forced vibration results will be given, based on the dimensions and 

the material properties of the shell given in Table 1. The total input force was given unity magnitude, so 

the resultant surface velocity has a value equal to the surface mobility. 

5.1.  Dispersion relations  

The dispersion relations for all three types of wave were calculated and are shown in Figure 2, where 

the real part of the natural frequency is plotted against circumferential mode number, with axial mode 

number as a parameter. The family of circumferential bending waves cut on in a relatively low frequency 

range and travel at approximately the flexural wave speed (here, about 200 m/s). The axial longitudinal 

waves cut on in the medium frequency range due to the relatively low stiffness in the axial direction 

compared to that in the circumferential direction. Finally, the circumferential longitudinal waves cut on 

in a higher frequency range due to the relatively high stiffness in the circumferential direction resulting 

from both curvature and pretension, and these waves represent in-plane motion of the shell. Although 

no out-of-plane shearing waves are allowed for in this type of shell model, the in-plane circumferential 

motion varies in the width direction and the axial longitudinal motion varies in the circumferential 

direction, hence causing what is described here as in-plane shearing. The first branch of all the modes 

shown in Figure 2 were not incorporated into the forced response results since that type of motion is 

prevented by the boundary conditions. That is when m = 1, km is equal to 0 and so no motion can exist  

 
(a)  (b) 

 (c) 

 
 

(d) 

Figure 2. (a) Dispersion plot of circumferential bending wave; (b) Dispersion plot of 

axial longitudinal wave; (c) Dispersion plot of circumferential longitudinal wave; (d) 

Sketch of all three wave types.  
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in the radial and circumferential direction; in contrast, the axial direction motion is a constant. Thus, the 

simple support boundary condition does not allow the lowest wave modes to exist for the various wave 

types. However, such low frequency resonances are typical and prominent in tire structures as shown 

both experimentally and in simulation by Sabiniarz and Kropp [7]. So in the following forced vibration 

response, the mobility results are not similar in some respect to those from a tire due to lack of low 

frequency modes. Note that other boundary condition of the shell model could be considered in order to 

incorporate the low order modal motion, e.g. sliding boundary condition.  

In Figure 2(d), the three wave types are illustrated: ur represents the circumferential bending wave 

which has most of its displacement in the radial direction; uθ represents the circumferential longitudinal 

wave, which travels tangentially in the θ-direction; and ux represents the axial longitudinal wave, which 

propagates axially in the x-direction. The distinction between the wave types can be seen from the 

different phase speeds, with the circumferential longitudinal wave being the fastest, the axial 

longitudinal wave the second fastest and the circumferential bending wave being the slowest. 

5.2.  Mobility results 

External forces were applied here to drive various structural modes. First, the radial input mobility and 

circumferential transfer mobility for a point excited shell were calculated, where the drive point was at 

x = L/3.3 and θ = 0. The mobility was calculated at the midpoint in the axial direction along the shell 

circumference for the line input and area input cases. In the calculations shown in Figure 3, there was 

only a radial external force, while in the results shown in Figure 4, there were both radial and tangential 

external forces. Because of the coupling between radial and circumferential motion, the radially driven 

response still results in a finite circumferential mobility, but it is much smaller compared to the radial 

mobility. It can be seen in Figure 4 that after adding the tangential excitation, the circumferential 

mobility is significantly increased while the radial mobility is essentially unchanged.   

In addition, the spatial radial mobility, that is the radial mobility plotted along the shell circumference 

center-line, is shown in Figure 5 for radial point, line and area excitations, respectively. The point 

excitation is the same as stated above; the excitation line is axial and spans from L/8 to 7L/8 with 20 

points in between, and the area excitation is square-like with 20 points spanning from L/8 to 7L/8 axially 

and 20 points spanning from –π/6 to π/6 circumferentially. By comparing the results shown in Figure 5, 

it is clear that the point excitation is most effective at exciting all modes and that the area excitation 

limits the modal response to a much lower frequency range, and the response remains local to the 

excitation area. Such phenomenon can be considered to result from applying a window in the spatial 

domain and the windowing effect can be seen in the dispersion results presented in the next section. 

 
(a) 

 
(b) 

Figure 3. (a) Radial input mobility under radial point excitation; (b) Circumferential 

transfer mobility under radial point excitation (close to the excitation location). 

Reference mobility 1 m/s/N. 
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(a) 

 
(b) 

Figure 4. (a) Radial input mobility under combined radial and tangential point excitation; 

(b) Circumferential input mobility under combined radial and tangential point excitation. 

Reference mobility 1 m/s/N. 

 

As for the tangential mobility results shown in Figure 6(a) as a function of width at the driving point, 

a distinctive nodal line around 1500 Hz, which is associated with the cut on of the 2nd branch of the 

circumferential longitudinal wave in Figure 2(c), which has one node in the width direction. It can also 

be seen in Figure 6(b) that tangential excitation can also trigger axial longitudinal waves due to the 

coupling in the shell. From 800 Hz to 1600 Hz, the 2nd branch of the axial longitudinal waves in Figure 

2(b) is the dominant propagating mode, where there is also one node in the width direction: see Figure 

  

 

 

Figure 5. (a) Point excitation mobility; (b) Line 

excitation mobility; (c) Area excitation mobility. 
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6(b). But starting from 1600 Hz, the 3rd branch of the axial wave cuts on and now two nodes appear in 

the axial direction. 

  
Figure 6. (a) Tangential input mobility due to tangential point excitation; (b) Axial 

mobility due to tangential point excitation. 

5.3.  Dispersion results 

By performing a Fourier series decomposition of the previous spatial mobility results, the frequency-

wavenumber results are obtained, as shown in Figure 7. In this representation, it is very clear that the 

point excitation drives the most modes while the line excitation only effectively excited the m = 1 mode 

circumferential bending wave: i.e., the line excitation does not couple effectively with higher order  

 

  

 

 

Figure 7. (a) Dispersion relation due to radial 

point excitation; (b) Dispersion relation due to 

radial line excitation; (c) Dispersion relation due 

to radial area excitation. 
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cross-sectional modes. The area excitation further suppresses both axial and circumferential resonances 

from the cylindrical shell structure. Note that the vertical strips in Figure 7(c) result from the rectangular 

nature of the force “window.” It was evident from the previous mobility results that the larger the 

excitation area, the lower the modal the response would be. Taken together, these results demonstrate 

that the spatial distribution of the input force has a very large impact on the nature of the cylinder’s 

response in terms of wave types. This observation in turn suggests that the sound radiation from the 

cylinder can be controlled by tailoring the spatial distribution of the input force. 

Although the results presented here show various interesting phenomenon, they do not precisely 

match the real tire tread response mainly due to the boundary conditions considered here. Further study 

is required to modify the shell boundary conditions to stiffness-supported at both edges in order to 

simulate more realistic tire tread vibration.    

6.  Conclusion 

From this investigation, it can be observed that in-plane shearing both in the circumferential and axial 

directions play a significant role in the finite-width shell response. The circumferential shearing is due 

to the changing mode shape in the axial direction and the axial shearing is due to the changing mode 

shape in the circumferential direction. Also, different spatial excitation results were compared and the 

excitation area distribution creates a spatial domain windowing effect, which can suppress certain modes 

and wave types in the forced response.  

In vehicle tires, various structural waves can propagate in the shell-like treadband. The above-

mentioned types of waves can be an important part of the waves traveling in the tire treadband and so 

they could act as the sources for tire noise in different frequency range. So the identification and control 

of these waves can be an important aspect in controlling tire noise issues.  
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