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Abstract. This paper describes the noise control for a moving evaluation point using neural 

networks by making the best use of its learning ability. Noise control is a technology which is 

effective on low-frequency noise. Based on the principle of superposition, a primary sound wave 

can be cancelled at an evaluation point by emitting a secondary opposite sound wave. To obtain 

good control performance, it is important to precisely identify the characteristics of all the sound 

paths. One of the most popular algorithms of noise control is filtered-x LMS algorithm. This 

algorithm can deliver a good result while all the sound paths do not change. However, the control 

system becomes uncontrollable while the evaluation point is moving. To solve the problem, the 

characteristics of all the paths are must be identified at all time. In this paper, we applied neural 

networks with the learning ability to the noise control system to follow the time-varying paths 

and verified its control performance by numerical simulations. Then, dropout technique for the 

networks is also applied. Dropout is a technique that prevent the network from overfitting and 

enables better control performance. By applying dropout for noise control, it prevents the system 

from diverging. 

1. Introduction 
Noise must be minimized at any time. The most effective way to reduce noise is eliminating noise 

sources as many as possible. For further measure, barriers are installed in order to prevent spreading 

noise. The barriers can suppress only high frequency noise. Noise control is an effective method for low 

frequency noise. Based on the principle of superposition, noise is reduced by emitting a sound wave 

with the same amplitude but with inverted phase to the noise from the other sound source called 

secondary source. There are two approaches to control noise. One is to minimize total sound power over 

whole space [1-2]. By identifying the characteristics of the sound field, the control is achievable as long 

as the noise is stationary. The other approach is to minimize noise at a local point [3-5]. Generally, 

filtered-x LMS algorithm is applied for this approach. LMS algorithm is one of steepest descent methods 

and coefficients of the filters are updated so as to decrease instantaneous squared errors. In filtered-x 

LMS algorithm, the transfer characteristics from the secondary source to the evaluation microphone 

must be identified by an adaptive filter in advance for a controller and the noise can be cancelled. 

However, in the case that the evaluation microphone moves, the transfer characteristics change and the 

system becomes uncontrollable when the identification error is not small. Thus, methods following the 

change of the characteristics are required. One of the methods is the virtual error method which is based 

on filtered-x LMS algorithm [3]. It requires three adaptive filters and all of them are updated by LMS 

algorithm simultaneously. Although the identification in advance do not have to be required in the 
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method, there are serious problem with the converging characteristics. The filters do not converge 

quickly so that it cannot follow the sudden change of the transfer characteristics [4]. 

In this paper, artificial neural networks were applied to noise control. Neural network is a model of 

signal processing circuit in the human brain. It has learning ability and adopts to a controlled system 

with varying parameters. In the conventional studies, it is clear that the neural network control system 

is effective on time-variant system [5-6]. When the evaluation microphone moves, the controller can 

identify the movement and also generate control outputs appropriately. However, higher frequency of 

noise and traveling speed of an evaluation microphone deteriorate the control performance. For further 

improvement, “dropout” technique was applied to the training process of the neural networks in this 

paper. Dropout is one of techniques that prevent the networks from overfitting [7]. In this way, the units 

of the network were randomly dropped out during the training. This paper also demonstrated the effects 

of dropout on the performance of the neural network controller.  

2. Numerical simulation method 
In this paper, all simulations were conducted in a free sound field as shown in figure 1. According to the 

theory of the wave equation, sound pressure denoted by P  is a function of time and position, and 

determined by  
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where c  is sound speed. Assuming that the sound is spherical wave, P is rewritten as a function of 

distance from an origin position. Then, by using polar coordinate, equation (1) is transformed as 
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where r  is distance from an origin position. Solution of equation (2) is the sum of traveling wave and 

backward wave. If there is a monopole sound source on the origin and its output is  tQ , the solution of 

equation (2) is given by 
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        (3) 

where the backward wave is ignored. Equation (3) means that sound pressure varies in inverse 

proportion to distance and that time lag of sound spread, r/c, is proportional to the distance between a 

sound source and a microphone.  

 
 

Figure 1. Model of free acoustic field with a moving microphone position 
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Now consider the case where there are two sound sources and a microphone in the acoustic field. 

One source acts as a noise source and the other acts as a secondary source. In general, linear 

superposition is assumed. In this case, sound pressure at position r  is given by 
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where nQ  is sound from the noise source, sQ  is sound from the secondary source, nr  is position vector 

of the noise source, and the sr  is position vector of the secondary source, respectively. By substituting 

the positon vector r to equation (4), sound pressure can be determined. In simulation, time history of 

waveform from the sound source is saved at each time step, and time lag is discretized in order to be 

processed as integer multiple of time step. 

3. Noise control algorithm using neural networks 

3.1. Neural network control system  

A block diagram of the control system using neural networks is shown in figure 2. It is composed of two 

connected networks; a controller part and an identification part. The controller part produces control 

output and the identification part identifies the transfer characteristics. These parts are constructed by 

multilayer networks and connected in series. The identification and the control errors were calculated 

using the output of the identification part. The identification and the controller parts were trained so as 

to reduce the identification and control errors by the back propagation method [8], respectively. In this 

method, the errors determined by the output of the networks are reduced by the steepest decent method. 

The control error was determined by the difference between the identification part output and the desired 

value so that it propagates the controller part via the identification part. In the virtual error method, three 

filters are updated. On the other hand, two filters are trained in the neural network control system. 

Figure 3 is a block diagram of the proposed neural network control system in detail. It may be easy 

for the networks to be trained by using time history of input signals because the controller should identify 

the time delay of sound transfer. By using the time history of the reference signal, the control output 

denoted by  ky  was calculated as [8] 
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Figure 2. Block diagram of the control system using neural networks 
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where k  is discrete time step, C
iW  is weight of the controller part,  kPR  is a signal from a reference 

microphone, and N  is the number of time steps for input signals.  ky  is equivalent to sQ  in equation 

(4). Similarly, the output of the identification part defined by P
~

 was calculated as 

       
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where  1S
iW  and 2S

iW  are weights of the controller part. Each part acts as an FIR filter. 

P
~

 must be the same value as an evaluation signal denoted by P . In the back propagation method, 

all of the errors are calculated by using output of the whole network. The identification error was 

determined by the difference between the output from the identification part and an evaluation signal 

written as PP 
~

. Since all these signals may have both positive and negative values, the evaluation 

function for identification is defined by using the squared value as 
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1
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and the weights of the identification part are modified so as to decrease  kES  based on the back 

propagation method. The update rule for identification part is given by 
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where S  is learning rate for the identification part. This learning rate has the same mathematical 

meaning as step size parameter for the steepest gradient method. Similarly, the control error was 

determined by the difference between the output from the identification part and the target value written 

as 0
~
P , so the evaluation function for the controller is defined by using the squared value as 
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and the weights of the controller part are modified so as to decrease  kEC . The update rule for the 

controller part is given by 
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where C  is learning rate for the controller part. This formula includes the particular weight 
1

0

SW . 

When this weight becomes zero, the control error is never propagated from the identification part to the 

 
 

Figure 3. Block diagram of the proposed neural network control system 
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controller part. Thus, the specified weight should not keep zero while controlling. Each learning rate is 

determined by trial and error method.  

3.2. Dropout 

We applied “dropout” technique to the training of neural networks to improve the noise control 

performance for a moving evaluation point. Dropout is an efficient technique to train multi-layered 

neural networks. In dropout, each unit is temporarily and randomly dropped out during training to realize 

the effect of averaging the characteristics of all these scale-downed networks. It prevents overfitting to 

training data and gives neural networks the generalization ability to adapt unknown data. In noise control 

for a moving evaluation point, it may move at one time and stop at another time. If neural networks 

overfit to the moving state, they cannot adapt to the stopping state. The problem can be solved by dropout. 

Another reason to use dropout is to preferentially train an important unit which connects the controller 

part to the identification part because it is only unit to propagate the control error from the identification 

part to the control part by the back propagation method. 

Dropout can be applied to every layer of neural networks. For example, with dropout in the input 

layer of the identification part, the forward operation becomes 
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where 
S

ir  has the probability of being 1. 
S

ir is zero when the corresponding unit was dropped out. The 

update formula of these weights is the same as that in the case without dropout, then the weights of 

dropped-out units were not trained. As mentioned above, the particular weight 
1

0

SW  is important when 

modifying the control weights based on the back propagation method. In the method, the errors 

derived from the output of the network are propagated to former units by multiplying weights of 

related units. Normally, the corresponding unit to 
1

0

SW  is sometimes dropped out, and then the 

 
Figure 4. Arrangement of sound sources and fixed microphones 

 

Table 1 Simulation conditions of noise control for a fixed evaluation point 

Temperature [oC] 14.8 

Sound speed [m/s] 341 

Sampling frequency [Hz] 5000 

Learning rate of controller part 0.01 

Learning rate of identification part 0.01 

Dropout probability of controller part 1.0 (without dropout) 

Dropout probability of identification part 1.0 (without dropout) 

The number of past inputs [steps] 25 

Initial value of weights random[-0.001～0.001] 

Waveform of noise Sinusoidal 

Frequency of noise [Hz] 200, 300, and 400 
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controller cannot learn in this time. To avoid this problem, exceptionally, this special unit must not be 

dropped out, which means 
1

0

Sr  is always 1. 

4. Noise control with neural networks for a fixed evaluation point 

4.1. Numerical simulations 

The arrangement of the experimental setup is shown in figure 4. A noise source, a reference microphone, 

a secondary source, and an evaluation microphone were lined up on a straight line in a free sound field. 

In this section, all the objects were set on a fixed point. 

Table 1 shows the simulation conditions. Sampling frequency of the control system was determined 

according to that of noise. In general, the sampling frequency needs ten times as much as the frequency 

of noise. The learning rate plays an important role in training. Smaller the value is, slower the 

convergence is. However, the system may be uncontrollable when the value is too big. Unfortunately, 

the learning rate is of each part cannot be determined automatically.  The value was given by a trial and 

error method in the simulation. In this part, units were never dropped out, therefore the dropout 

probability of each part was set to 1. The effects of dropout are discussed in the section 6. In the control, 

200 Hz, Case A  200 Hz, Case B 

  
300 Hz, Case A  300 Hz, Case B 

  
400 Hz, Case A  400 Hz, Case B 

  
Figure 5. Simulation results of noise control for a fixed evaluation point.  

Case A indicates the better results than Case B.  
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each weight was randomly set to a small value in the initial state in order to reduce the dependency of 

initial values. For the sake of simplicity, a sinusoidal wave with constant frequency was used as target 

noise. The noise frequency was much lower than the sampling frequency. Any external disturbances 

were ignored in the simulations. 

Figure 5 shows the simulation results of noise control for a fixed evaluation point. The control 

performances, which means the evaluation signals, depends on the initial value of the weights of the 

networks. There were two major cases observed in the simulation, one of which was that the signal 

converged (Case A) and the other of which was that the signal immediately diverged (Case B). In Case 

A, the convergence speed did not depend on the target frequency so much. There were 20 dB 

attenuations of the noise in all the frequencies. In Case B, the signals were soon diverges and good 

control performance could never be obtained. 

 

4.2. Experiments 

In order to verify the validation of the simulation, the corresponding experiments for noise control were 

conducted. A schematic diagram of the experimental setup is shown in figure 6. In order to reduce the 

effect of external noise and any reflections of sound, speakers and microphones were set in an anechoic 

chamber. A function generator gave a noise signal which was sinusoidal wave with constant amplitude 

 

 

Figure 6. Schematic diagram of the experimental setup for noise control 
 

 

Table 2. Experimental conditions of noise control for a fixed evaluation point 

Temperature [oC] 14.8 

Sound speed [m/s] 341 

Sampling frequency [Hz] 5000 

Learning rate of controller part 1.0 

Learning rate of identification part 1.0 

Dropout probability of controller part 1.0 (without dropout) 

Dropout probability of identification part 1.0 (without dropout) 

The number of past inputs [steps] 25 

Initial value of weights random[-0.001～0.001] 

Waveform of noise Sinusoidal 

Frequency of noise [Hz] 200, 300, and 400 
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and single frequency to one of the speakers. For real-time control, a digital signal processor (DSP) was 

used. The DSP received voltage signals from these microphones and then modified the weights of the 

neural network controller. Output of the DSP was fed to the other speaker to cancel the noise. All of the 

wave signals were observed with an oscilloscope. Table 2 shows the experimental conditions. Almost 

all of the experimental conditions were the same as those of the simulations.  

Figure 7 shows the experimental results for the fixed evaluation point. Similarly to the simulations, 

the control performance depended on the initial values of the weights. These were classified into two 

cases; convergence one (Case A) and divergence one (Case B). The results of each case were obtained 

at least 3 times.  

The tendency of the experimental results were same as that of the simulation results except for 400 

Hz in Case A, the reason of which is under consideration. In Case A, the evaluation signals in all the 

results were reduced by at least 6 dB attenuations. The control performance of other frequencies such 

as 100 Hz and 500 Hz after the convergence was similar to that of 200 Hz and 300 Hz. Another problem 

is the variation of convergence speed depending on the frequency of noise. 

In Case B, the signal got bigger and diverged immediately. Not to damage the DSP by the high 

voltage signal from microphone amplifiers, it executed forced termination command after the 

200 Hz, Case A  200 Hz, Case B 

   
300 Hz, Case A  300 Hz, Case B 

   
400 Hz, Case A  400 Hz, Case B 

   
Figure 7. Experimental results of noise control for a fixed evaluation point 

Case A indicates the better results than Case B. 
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divergence and kept stopping. For this reason, some results looked as if controller did not work after the 

divergence in some failure cases. When the frequency of noise was 200 Hz, the divergence stopped and 

the evaluation signal kept almost constant and high amplitude. The cause of this may be convergence of 

the weight 1
0
SW  around zero. This weight is a key to train the controller part of the neural network 

control system. If the weight and the identification error are zero, the control error is not propagated 

well to the controller part and then weights of the controller parts are hardly modified. In this case, the 

output of the DSP does not changes unless input to the DSP changes. 

5. Noise control simulation with neural networks for a moving evaluation point 
In this section, the control performance for a moving evaluation point was verified by simulations. 

Figure 8 shows the arrangement of sound sources and microphones, and the movement path of the 

evaluation microphone. The initial arrangement of these objects was the same as the simulatins above. 

The evaluation microphone moved on the straight line with a constant speed. At first, the evaluation 

microphone was set at X1 point and then started to move 5 seconds after the control start. When it arrived 

at X2 point, it stoped at the X2 point and kept the position.  

 
 

Figure 8. Arrangement of sound sources and microphones, 

 and the movement path of an evaluation microphone 

 

 

Table 3. Simulation conditions of noise control for a moving evaluation point 

Temperature [oC] 14.8 

Sound speed [m/s] 341 

Sampling frequency [Hz] 5000 

Learning rate of controller part 0.01 

Learning rate of identification part 0.01 

Dropout probability of controller part 1.0 (without dropout) 

Dropout probability of identification part 1.0 or 0.9 

The number of past inputs [steps] 25 

Initial value of weights random[-0.001～0.001] 

Waveform of noise Sinusoidal 

Frequency of noise [Hz] 200, 300, and 400 

Movement speed of an evaluation microphone [m/s] 0.2 m/s 

 

Move

x

0.2 m 1.0 m 0.4 m0.3 m

Reference

Microphone

Secondary

Source

Noise

Source

Evaluation

Microphone

X1 X2

O
t = 5 s

t = 7 s

t

MOVIC2016 & RASD2016 IOP Publishing
Journal of Physics: Conference Series 744 (2016) 012183 doi:10.1088/1742-6596/744/1/012183

9



 

 

 

 

 

 

The other conditions are shown in table 3. To verify the effects of dropout, the dropout probability 

was set to the networks. Since the controller part was required to connect to the identification part as 

mentioned in the section 2, dropout was not applied to the connecting point. The dropout probability of 

each part was also given by a trial and error method.  

The control performance of the system without dropout is shown in figure 9. Similarly to the 

simulations above, the evaluation signal may decrease or increase depending on the initial values of the 

weight. In Case A, good control performance was obtained while the evaluation microphone was moving 

at each frequency. There were approximately 10 dB attenuations during the movement. Especially, at 

300 Hz, the signal kept good control performance even after the evaluation microphone stopped. 

However, at the other frequencies, the signal started to diverge immediately after the state transited from 

the moving to the stopping. In Case B, the signal diverged immediately after the state transited from the 

initial to the control. 

The performance of the control system with dropout for the identification part is shown in figure 

10. In Case A, the divergence of the signals which appeared in the control without dropout 

immediately after the state transited from the moving to the stopping was prevented. However, the 

convergence speed with dropout was slower than that without dropout. That may be why the number 

200 Hz, Case A  200 Hz, Case B 

  
300 Hz, Case A  300 Hz, Case B 

  
400 Hz, Case A  400 Hz, Case B 

  
Figure 9. Simulation results for a moving evaluation point without dropout.  

Case A indicates the better results than Case B.  

The evaluation point started to move at 5 s and stopped at 7s. 
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of times of modifying the weights decreased due to the temporal and random dropout of the units 

during the training. In Case B, the divergence of the signals which appeared in the control without 

dropout immediately after the state transited from the initial to the control was prevented. These 

indicate that the use of dropout in noise control systems using neural networks can prevent the signal 

divergence, which is one of the most important factors for noise control, even if an evaluation point 

moves. That may be because the overfitting was supressed by temporarily and randomly dropping 

units out in the learning steps. 

One of the advantages of neural network is that the identification in advance is not required.  In the 

filtered-x LMS algorithm and the virtual error method, the identification must be completed before the 

control. Therefore,  the evaluation signal diverges when the evaluation moves in the filtered-x LMS 

algorithm [6].  Neural networks can not only require no preliminary identification but also prevent the 

signal divergence by using the dropout technique. 

 

200 Hz, Case A  200 Hz, Case B 

  
300 Hz, Case A  300 Hz, Case B 

  
400 Hz, Case A  400 Hz, Case B 

  
Figure 10. Simulation results for a moving evaluation point with dropout.  

Case A indicates the better results than Case B. 

The evaluation point started to move at 5 s and stopped at 7s. 
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6. Conclusions 
In this paper, a neural network control system was proposed for noise control. The performance of the 

control without dropout for a fixed evaluation point was verified in simulations and experiments. Also, 

the performance of the control with and without dropout for a moving evaluation point was verified in 

simulations. The results to be obtained are as follows: 

(1) For a fixed evaluation point, the good performance of the control without dropout can be obtained 

although the evaluation signal divergently increases in some cases.  

(2) For a moving evaluation point, the good performance of the control without dropout can be obtained 

although the evaluation signal divergently increases in some cases. 

(3) The use of dropout in the noise control system using neural networks is very effective on preventing 

the divergence of the evaluation signal, which is one of the most important factors for noise control, 

even if the evaluation point moves.  
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