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Abstract. Both structural modes and acoustic radiation modes play important roles in the 

investigation of structure-borne sound. However, litt le work has been done for inherent 

relations between these two kinds of modes. Prev ious work has main ly dealt with simple  and 

regular structures such as rectangular plates and single-layer cylindrical shells. Therefore, the 

relationship between structural modes and acoustic radiation modes of complicated structures 

which has great theory significance and utility value is an important problem that must be 

studied. This paper presents a numerical method for seeking the relationship between structural 

modes and acoustic radiation modes of complicated structures. First, a governing equation for 

relating these two kinds of modes is given based on the characteristics of the modes. Then, 

substitute the normal structural mode shape matrix and the acoustic radiation mode shape 

matrix which are obtained by FEM into the governing equation, the modal participating 

coefficients can be solved, thus we can get the corresponding relations between these two kinds 

of modes. Using the model of a simply supported truncated conical shell, a  numerical example 

is presented with the numerical method which this paper has proposed. And then, the radiated 

sound power is calculated to verify the effectiveness of this method and the correctness of this 

conclusion. The results show that the numerical method proposed in this paper is feasible. 

1.  Introduction 
In recent years, the technique of Active Structural Acoustic Control (ASAC) as embodied in the 
research of Fuller and his co-workers [1], has become a research hotspot in the field of structural 
acoustics. This technique is to use controlling inputs applied directly to the structure to reduce or 
change the vibration distribution with the objective of reducing the overall sound radiation, putting 
forward more pressing requirement of the study on the relationship between structural vibration and 
acoustic radiation. For structural vibration problem, it can be put in the vibration modal space to study 
on. Vibration response (e.g. Displacement, velocity, etc) of the structure can be expressed as a linear 
superposition of each order structural mode. For structure-borne sound problem, the theory of acoustic 
radiation mode proposed by Borgiotti and Elliott [2-4] is normally used to analyze and control, for the 
acoustic radiation of each order structural mode is actually not independent and the coupling 
phenomenon exists. Thus, from the perspective of mode, study on the relationship of structural 
vibration and acoustic radiation comes down to seek corresponding relationship between structural 
mode and acoustic radiation mode. 
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There is no doubt that, study on the corresponding relationship between the two modes is of great 
significance. For instance, in the research of active structural acoustic control with the theory of 
acoustic radiation mode, the dominant acoustic radiation mode can be exactly identified according to 
the corresponding relationship between structural mode and acoustic radiation mode. Thereby, control 
effect of broadband can be achieved, and any other effective control band can be freely selected with 
specific control objectives. Shuang Li and his co-workers [5] took simply supported rectangular plate 
as study object, derived the corresponding relationship between the two modes in terms of the 
symmetry or antisymmetry of mode shape and applied the relationship to ASAC. With same method, 
Weiping He et al. [6] derived the corresponding relationship between structural mode and acoustic 
radiation mode of a simply supported cylindrical shell. On the basis, Shaohu Ding and his partners [7] 
further analyzed the specific corresponding relationship from the features of acoustic radiation of 
cylinder shells and made study on the mechanism of active control.  

However, the above study methods, which are on the basis of symmetry or antisymmetry of mode 
shapes, only applied to simple and regular structures. That is to say the shape of structural mode and 
acoustic radiation mode must be symmetric or antisymmetric. Moreover, Previous research objects 
only confined to some simple structures such as plates or single-layer cylindrical shells which can be 
dealt with analytic method, and the boundary conditions are also limited. While many modern 
engineering structures such as underwater vehicle shells and aircraft cabins were normally equivalent 
to truncated conical shells or coupled cylindrical-conical shells [8]. Because of complicated 
geometrical shapes and boundary conditions, it’s difficult to solve with mathematical analysis method. 
Mode shapes are no more symmetric or antisymmetric. Thus, the corresponding relationship between 
structural mode and acoustic radiation mode of complicated structures is the problem needed to study 
on the next step, which is of great theoretical significance and practical value. This paper is on 
complicated structures and tries to put forward a numerical method for seeking corresponding 
relationships between modes combined with the theory of base vector in vector space and Finite 
Element Method (FEM). Firstly, from the concepts of structural mode and acoustic radiation mode, 
governing equation between the two modes would be derived according to the theory of base vector in 
vector space. And then numerical methods including Finite Element would be adopted to get normal 
structural mode shape matrix and acoustic radiation mode shape matrix of complicated structures in 
order to solve the modal participating coefficients and get corresponding relationship between the two 
modes. At last, taking truncated conical shell as an example, numerical example analysis with 
numerical method in this paper is to be presented. Furthermore, method and conclusion proposed in 
this paper would be tested and verified with radiated sound power of the structure. 

2.  Theory 
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Figure 1. Schematic diagram of the vibrating structure 
For any vibrating structure in the medium which velocity of sound is c0 and average density is ρ0, as is 
shown in figure 1. The structure is in situation of simple harmonic vibration with angular frequency ω, 

and radiating sound energy to free field. The surface of the vibrating structure oS  is uniformly 

discretized into a number of elements. 

MOVIC2016 & RASD2016 IOP Publishing
Journal of Physics: Conference Series 744 (2016) 012182 doi:10.1088/1742-6596/744/1/012182

2



 
 
 
 
 
 

2.1.  Structural mode 
In terms of modal superposition principle of structural mode, vibration response of the structure can be 
expressed as a linear superposition of each order structural mode. Nodal velocity vector of finite 

elements V can be written as the following form 

1

=
N

i i

i

A


V ΨA                                                              （1） 

where Ψ  is structural mode shape matrix, with the ith column 
i  representing the ith modal shape of 

the structure; A  is the corresponding modal amplitude vector, which is determined by structure 
parameters and external excitation, its element 

i
A  represents the contribution of the ith structural mode 

to structural vibration response; N  is the number of elements on the surface of structure. 
The structural normal velocity vector 

n
V  and the nodal velocity vector of finite elements V  are 

related with each other by 

=
n

V GV                                                                     （2） 

G  is transformation matrix, which can be calculated by nodal coordinates. Its function is to transfer  

nodal velocity vector of finite elements V  to structural normal velocity vector 
n

V . Substituting 

equation (1) into equation (2) gives 

= 
n

V GΨA ΦA                                                                （3） 

where = GΨΦ  is normal structural mode shape matrix, with the ith column is denoted by 
i . 

2.2.  Acoustic radiation mode 
Acoustic radiation mode is a kind of possible radiation forms on the surface of radiator and inherent 
nature of specific radiator. It is not determined by material features of radiator but the geometrical 
shape and vibrational frequency. The distribution of normal velocity on the surface of structure under 
any boundary conditions can usually be represented in terms of acoustic radiation modes as 

1

N

k

k ky q


 n
V QY                                                            （4） 

here Q  is an orthogonal matrix which was got through eigen-decomposition of the structural radiation 

resistance matrix R , defined as acoustic radiation mode shape matrix, with the k th column 
kq  is then 

defined as the k th acoustic radiation mode; The structural radiation resistance matrix R can be 
calculated according to Ref. [4]. For convenience, we won’t review it again here. For complicated 
structures, the problem is how to discretize the structural surface into a number of elements and 
acquire nodal coordinates. Y  is modal amplitude vector corresponding to acoustic radiation mode, its 

element 
ky  refers to the amplitude of the k th acoustic radiation mode. 

According to the theoretical derivation introduced in Refs. [2-4], the sound power radiation from a 

vibrating structure W  can thus be written as 

2

1

N

k

k kW y


                                                                （5） 

where 
k  is the eigenvalue corresponding to the k th acoustic radiation mode. It is named as the 

coefficient of modal radiation efficiency, which is proportional to modal radiation efficiency. 

2.3.  Relationship between two modes 
From the perspective of structural vibration and acoustic radiation, structural mode shows structural 
dynamic characteristic while acoustic radiation mode reflects acoustic radiation characteristic. There is 
a certain relationship between structural mode and acoustic radiation mode. From equations (3), (4) 
can be written as 


n

V ΦΑ QY                                                                （6） 
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It can be found that normal component of structural mode and acoustic radiation mode are both a 

group of base vectors of structural normal velocity, referred to as Φ , Q  . Therefore, in terms of the 
theory of base vector in vector space, any base vector in Φ  can be expressed by linear combination of 

each order base vector in Q , that is 

 
1

1, ,
N

k

i k kc q i N


   
i

QC                                             （7） 

where, 
kc  is the participating coefficient of the k th acoustic radiation mode when the ith structural 

mode is expressed by linear combination of each order acoustic radiation modes; 
i

C  is the column 

vector of  modal participating coefficient. 
Equation (7) is the governing equation between structural mode and acoustic radiation mode. 

Premultiply -1
Q (the inverse matrix of Q ) on both ends of equation, gives 

i -1

i
C Q                                                                         （8） 

It is known that Q  is an orthogonal matrix, here -1 T
Q Q . 

3.  Numerical method, example and verification 
Through the above theoretical analysis, we can come to a conclusion: no matter how the structural 
shapes and boundary conditions change, whether mode shapes are symmetric or antisymmetric, the 
column vector of modal participating coefficient can be solved out through equation (8) as long as the 

normal structural mode shape matrix Φ  and the acoustic radiation mode shape matrix Q  are known. 

Then, contrasting the participating coefficient 
kc  of each order acoustic radiation mode, we can easily 

and visually get the dominant acoustic radiation mode which corresponding to the ith structural mode, 
and then we can sum up the corresponding relations between structural modes and acoustic radiation 
modes. 

Therefore, for complicated structures whose corresponding relations between the two modes are 
difficult to seek by mathematical analysis method or by the method using symmetry/antisymmetry of 
modal shapes, a numerical method is proposed here. First, build the finite element model with the 
Finite Element Software, carry out modal analysis, then export the structural mode shape matrix Ψ , 
and then get the normal structural mode shape matrix Φ  by equation (3); Then, export nodal 
coordinates from Finite Element Software, calculate the structural radiation resistance matrix R  

according to Ref. [4], after that achieve acoustic radiation mode shape matrix Q through eigen-
decomposition; Finally, substitute them into the governing equation (Equation (8)) to seek the 
corresponding relations between these two kinds of modes. 

Next, use the model of truncated conical shell and carry out numerical analysis by the above 
numerical method. As shown in figure 2, the origin of coordinates is chosen in the circle center at the 
smaller end. The boundary condition is assumed to be simply supported at both ends, with material 
properties as steel. The surface of truncated conical shell is uniformly discretized into 480 elements 
(axial direction  circumferential direction = 16  30). Model data is given in table 1. The FE mesh and 
force impose on truncated conical shell is shown as figure 3. 
 

Table 1. Model data 

Parameter Value Unit   Parameter Value Unit  

1R  0.3 m  Poisson’s ratio of structure 0.3  

2R  0.5 m  Density of structure 7800 kg/m
3
 

L  1 m  Speed of sound 343 m/s 

Shell thickness 0.002 m  Excit ing force  10 N 

Young’s modulus of structure 210 GPa     
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Figure 2. Model of truncated conical shell 
Figure 3. FE mesh and force impose on 

truncated conical shell 
Derive nodal coordinates from Finite Element Software, calculate structural radiation resistance 

matrix R , and achieve acoustic radiation mode shape matrix Q  and the coefficient of modal radiation 

efficiency 
k  through eigenvalue decomposition. Then, the radiation efficiencies of the first 10 

acoustic radiation modes are shown in figure 4. It can be seen that one important feature of acoustic 
radiation mode is that the radiation efficiencies reduce rapidly with the increase of modal order at low 

frequency. This paper will choose the low frequency range (10 300Hz f Hz  ) which active control 

concerned to analyze. For more precision, we extend the scope of discussion to the first 20 acoustic 
radiation modes. For truncated conical shell, the shapes of radiation modes are different in each order. 

Figure 5 shows the first 6 acoustic radiation modes of the model at 151f Hz . 
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Figure 4. Radiation efficiencies of the first 10 
acoustic radiation modes of the structure 
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Figure 5. The first 6 acoustic radiation modes of the structure at 151f Hz  

Through modal analysis of finite element model, structural mode shape matrix Ψ  can be got. The 
normal structural mode shape matrix Φ  can thus be obtained by transformation based on equation (3). 

This model has 6 structural modes below 300Hz . The distribution of its characteristic frequency is 
shown in table 2. The first 6 structural modes are shown in figure 6. 
 

Table 2. Characteristic frequency distribution of truncated conical shell (m and n correspond to 
axial mode number and circumferential mode number) 

Mode order i  1 2 3 4 5 6 

Mode index (m,n) (1,5) (1,6) (1,4) (1,7) (1,8) (1,3) 

Frequency (Hz) 151.16 160.13 185.82 197.63 251.27 283.83 
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Figure 6. The first 6 structural modes of the structure 

Both figures 5 and 6 show that, compared with the simple and regular structures such as 
rectangular plates and single-layer cylindrical shells, the geometrical shape of truncated conical shell 
is more complicated. Its mode shapes are no more symmetric or antisymmetric, especially in its axial 
direction. Hence, previous method proposed in Refs. [5-7] is no longer applicable here. 

Use the numerical method proposed in this paper, and then substitute the acoustic radiation mode 

shape matrix Q  and the normal structural mode shape matrix Φ  into equation (8). The vector of 

modal participating coefficients i
C  can be solved. Figure 7 shows the column vector of modal 

participating coefficients  1,2, 6i  
i

C , while the first 6 structural modes are expressed as a linear 
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superposition of acoustic radiation modes, respectively. It is seen that, in figure 7(a), the values of the 

1st and 9th modal participating coefficients (i.e.,
1c ,

9c ) are significantly higher than the other orders. It 

indicates that when the 1st structural mode is expressed by linear combination of each order acoustic 
radiation modes, the 1st and 9th acoustic radiation modes are bigger contributors. Thus we can 
consider that the 1st and 9th acoustic radiation modes are the dominant acoustic radiation modes 
which corresponding to the 1st structural mode. Using the same analytic method, figures 7(b-f) 
indicate that: the 2nd , 3rd and 4th structural modes, different from the 1st structural mode, all 
correspond to the 1st , 4th and 9th acoustic radiation modes; the 5th structural mode corresponds to the 
3rd and 4th acoustic radiation modes; the 6th structural mode corresponds to the 3rd, 6th and 9th 
acoustic radiation modes. The corresponding relations of higher order structural modes can be sought 
by this method as well. There is no need to enumerate all the discussions here. Furthermore, 
comparing these conclusions with previous works in Refs. [5-7], we can find that the relationships 
between structural modes and acoustic radiation modes of truncated conical shell do not meet those 
modal corresponding laws of simple structures any more. 
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Figure 7. The corresponding relations between structural modes and 

acoustic radiation modes 
Finally, the radiated sound power is calculated to verify the effectiveness of this method and the 

correctness of this conclusion. Use point force excitation with amplitude of 10N . The location is chose 
to ensure all major structural modes within the analysis frequency band will be motivated, as shown in 
Fig. 3. According to equation (5), figure 8 shows the total radiated sound power of the truncated 
conical shell. We can find that these peaks in the curve always occur at the characteristic frequencies 
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of truncated conical shell. The radiated sound power from the 1st, 3rd, 4th, 6th, and 9th acoustic 
radiation modes are shown in figure 9. Comparing figure 8 with figure 9, we can find that, the total 
radiated sound power tends to be dominated by the 1st and the 9th acoustic radiation modes while the 

truncated conical shell vibrates mainly by the 1st structural mode at its natural frequency(i.e.,151Hz ). 
Therefore, we can get in line with the above conclusion, the 1st and the 9th acoustic radiation modes 
are the dominant acoustic radiation modes which correspond to the 1st structural mode. Similar 
conclusions can be achieved at other natural frequencies. It indicates that the corresponding relations 
between these two kinds of modes of truncated conical shell we have gotten from last paragraph are 
correct, and then it demonstrates that the numerical method for seeking the relationship between 
structural modes and acoustic radiation modes of complicated structures proposed in this paper is 
feasible. 
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Figure 8. The total radiated sound power of the structure 
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Figure 9. Radiated sound power from each order acoustic radiation mode 

4.  Conclusions 
In view of complicated structures, this paper presents a numerical method for seeking the relationship 
between structural modes and acoustic radiation modes. First, based on the theory of base vector in 
vector space, a governing equation for relating the two kinds of modes is given from the consideration 
of characteristics of the modes. Then, substitute the normal structural mode shape matrix and the 
acoustic radiation mode shape matrix which are obtained with the aid of FEM into the governing 
equation, the modal participating coefficients can be solved, thus we can get the corresponding 
relations between these two kinds of modes. Using the model of a simply supported truncated conical 
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shell, a numerical example is presented with the numerical method which is proposed in this paper, 
and the corresponding relations of truncated conical shell are achieved. Finally, the radiated sound 
power is calculated to verify the effectiveness of this method and the correctness of this conclusion.  

In comparison with previous works, the research object of seeking the relationship between these 
two kinds of modes was extended to complicated structures in this paper. That is to say, no matter how 
the structural shapes and boundary conditions change, or whether modal shapes have symmetry or 
antisymmetry or not, we can use the numerical method proposed in this paper to obtain the normal 

structural mode shape matrix Φ  and the acoustic radiation mode matrix Q  ,and then seek the 
relationship between structural modes and acoustic radiation modes. This method can be used to 
further investigate and interpret a series of sound radiation problems of complicated structures. 
Especially it can play a guidance role in ASAC of complicated structures. 

Acknowledgments 
The authors gratefully thank the supports from Natural Science Foundation of China (grants 
51305452), and express their thanks to the referees for their review of this manuscript. 

References 
[1] Fuller C R 1985 Experiments on reduction of aircraft interior noise using active control of 

fuselage vibration J. Acoust. Soc. Am. 78(S1) S79 
[2] Borgiotti G V 1990 The power radiated by a vibrating body in an acoustic fluid and its 

determination from boundary measurements J. Acoust. Soc. Am. 88(4) pp 1884–1893 
[3] Borgiotti G V and Jones K E 1993 The determination of the acoustic farfield of a radiating body 

in an acoustic fluid from boundary measurements J. Acoust. Soc. Am. 93(5) pp 2788–2797 
[4] Elliott S J and Johnson M E 1993 Radiation modes and the active control of sound power J. 

Acoust. Soc. Am. 94(4) pp 2194–2204 
[5] Shuang LI and Ke’an CHEN 2007 China The relationship between acoustic modes and 

structural modes and its applications Chinese Journal of Acoustics 26(2) pp 158-167 
[6] Weiping HE, Meixia CHEN, Jianhui WEI and Cong ZHANG 2012 China Calculation of 

acoustic power radiated from a cylindrical shell based on a limited number of measurements 
Journal of Ship Mechanics 16(10) pp 1204-1211 

[7] Shaohu DING, Ke’an CHEN, Xiyue MA and Haoxin YU 2014 China Active structural acoustic 
control of a submerged finite cylindrical shell and its physical mechanism Journal of 
Vibration Engineering 27(4) pp 547-554 

[8] Caresta M and Kessissoglou N J 2010 Free vibrational characteristics of isotropic coupled 
cylindrical-conical shells Journal of Sound and Vibration 329(2010) pp 733-751 

MOVIC2016 & RASD2016 IOP Publishing
Journal of Physics: Conference Series 744 (2016) 012182 doi:10.1088/1742-6596/744/1/012182

9


