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Abstract. The motivation for the following work is a structural column under dynamic axial
loads with both deterministic (harmonic transmitted forces from the surrounding structure)
and random (wind and/or earthquake) loading components. The bounded noise used herein
is a sinusoid with an argument composed of a random (Wiener) process deviation about a
mean frequency. By this approach, a noise parameter may be used to investigate the behavior
through the spectrum from simple harmonic forcing, to a bounded random process with very
little harmonic content.

The stability of both the trivial and non-trivial stationary solutions of an axially-loaded
column (which is modeled as a second order nonlinear equation) under parametric bounded
noise excitation is investigated by use of Lyapunov exponents. Specifically the effect of noise
magnitude, amplitude of the forcing, and damping on stability of a column is investigated. First
order averaging is employed to obtain analytical approximations of the Lyapunov exponents of
the trivial solution. For the non-trivial stationary solution however, the Lyapunov exponents are
obtained via Monte Carlo simulation as the stability equations become analytically intractable.

1. Introduction

Parametrically forced second-order differential equations are of great interest in civil and
mechanical engineering as they may be used to model axially loaded structures such as columns
and/or pendulums. The second order equation

q̈ + 2εζωq̇ + ω2
[
1− εμ cos

(
νt+ σW (t) + θ

)
+ εγq2

]
q = 0, (1)

in particular models the centre transverse displacement q of the first mode of vibration of a
structural column with damping coefficient ζ, undamped natural frequency ω, and load intensity
μ. The Wiener process, W (t), is used to generate a normalized bounded noise axial excitation
with main frequency ν, variance σ, and initial phase θ. Finally the parameter γ captures the
axial contribution to lateral stiffness of a deflected column, which is a higher order effect.

The small parameter ε is inserted artificially to control the order of damping, forcing, and
nonlinearity. The problem difficulty is reduced dramatically by limiting these terms to be small.
Small damping is not a particularly confining assumption as most structural materials do not
dissipate energy very well. The same is true for nonlinearity since for small oscillations the axial
contribution to transverse stiffness is typically much smaller than bending stiffness. There is in
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general no reason to confine the forcing to be small, however due to the amplifying nature of
resonance phenomena one can still learn a great deal about stability even with small magnitude
loading.

Using variation of parameters and time scaling τ = νt, the equation of motion may be
converted to two coupled first order equations of amplitude, a(τ), and phase, φ(τ),

a′ = εa
{
−

ζω

ν

[
1− cos (2κτ + 2φ)

]
+ κΔ0 sin (2κτ + 2φ) +

γω2

κν2
a2
[1
8
sin (4κτ + 4φ) +

1

4
sin (2κτ + 2φ)

]
−

μω2

2κν2
[
sin

(
2κτ + 2φ− τ − Ψ̄(τ)

)
+ sin

(
2κτ + 2φ+ τ + Ψ̄(τ)

)]}
,

φ′ = ε
{
−
ζω

ν
sin (2κτ + 2φ) + κΔ0

[
1 + cos (2κτ + 2φ)

]
+

γω2

κν2
a2
[1
8
cos (4κτ + 4φ) +

1

4
cos (2κτ + 2φ) +

3

8

]
−

μω2

2κν2
[
cos τ +

1

2
cos

(
2κτ + 2φ− τ − Ψ̄(τ)

)
+

1

2
cos

(
2κτ + 2φ+ τ + Ψ̄(τ)

)]}
,

(2)

where κ = ω/ω0 with ω0 being a reference frequency. The detuning parameter Δ0 and time
scaled stochastic forcing Ψ̄ are given by

Ψ̄(τ) =
( ε

ν

)1/2
W (τ) + θ,

Δ0 =
1

ε

(
1−

ν

ω0

)
.

(3)

The deterministic case (i.e. σ = 0) is studied in detail in [1]. A similar system with viscoelastic
material rather than the cubic nonlinearity is investigated for bounded noise in [2], and for wide
band noise in [3].

The largest Lyapunov exponent, often simply termed Lyapunov exponent, of the amplitude,
a(t), is given by

λ = lim
t→∞

1

t
ln

∥∥a(t)∥∥. (4)

It has been shown that even for stochastic systems λ is a deterministic number that represents
the average growth or decay rate of the system [4]. Furthermore if λ < 0 then the system is
asymptotically stable w.p.1, and if λ = 0 it is stable w.p.1. The Lyapunov exponent is only
suitable for linear systems, however it may be applied to nonlinear systems by use of linearization
about a solution of interest.

2. The trivial solution

The trivial solution, a(τ) = 0, is of primary importance as this represents the neutral state
of structural systems. The motion near the trivial solution is typically characterized by small
high frequency motions about larger dominant low frequency oscillations and may therefore be
approximated by averaged amplitude and phase, ā and φ̄ respectively. This is done by the
method of averaging [5]. Applying the method of averaging with κ = 1/2 to equation (2) yields
equation (5), which is the first order averaged equations of motion in the resonance region. Note
that for other values of κ no resonance occurs and the trivial solution is always stable.

ā′ = εā(1) = −ε
[ζω
ν

+
μω2

ν2
sin

(
2φ̄− Ψ̄

)]
ā,

φ̄′ = εφ̄(1) =
1

2
ε
[
Δ0 +

3γω2

2ν2
ā2 −

2μω2

ν2
cos

(
2φ̄− Ψ̄

)]
.

(5)
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Figure 1. Comparison of exact and averaged time response.

Figure 1 shows two typical time series for both the full system and the averaged equations.
It is clear that the averaged equations capture the overall trend of the dynamics, only losing
information about the small high frequency oscillations.

The first order equations may be integrated directly to obtain the Lyapunov exponent of the
system

λ = νλτ = ν lim
τ→∞

1

τ
ln ā(τ) = ν lim

τ→∞

1

τ

∫ τ

0

dā

ā
= ν lim

τ→∞

1

τ

∫ τ

0
−ε

[ζω
ν

+
μω2

ν2
sin (2φ̄− Ψ̄)

]
dτ,

= −
εμω2

ν2
E
[
sin (2φ̄− Ψ̄)

]
−

εζω

ν
. (6)

The expectation can be shown to be [1]

E
[
sin(2φ̄− Ψ̄)

]
= FI(α, β) =

1

2

[
Iiα+1(β)

Iiα(β)
+

I−iα+1(β)

I−iα(β)

]
, (7)

where α = 2Δ0ν
σ2 , β = −

4μω2

νσ2 , and Iz(x) is the Bessel function of imaginary argument z. This
equation may be used to investigate the affects of noise intensity, load intensity, and damping
on the stability of the system. Nonlinearity does not affect stability in the vicinity of the trivial
solution. Figure 2.a) shows that noise tends to improve the stability of the system since it
reduces λ and narrows the region of λ > 0. The domain of λ > 0 is effectively the domain of
instability of the trivial solution. Noise therefore essentially acts to disrupt resonance between
the system and a periodic excitation. This has some interesting implications in the field of
structural control, suggesting that artificial noise may be used to stabilize systems. Figures 2.b)
and c) show that load intensity destabilizes the system and damping stabilizes the system, which
is expected.
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Figure 2. Lyapunov exponent of trivial solution vs. a) noise intensity σ, b) load intensity μ,
c) damping ζ.
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Figure 3. Comparison of approximate analytical and exact amplitude-frequency relationship.

3. The non-trivial stationary solution

Non-trivial solutions are best characterized by the amplitude-frequency relationship, which is
a plot of the amplitude of motion, a0, against the forcing frequency ratio, ν

2ω . In the non-
deterministic case however it is necessary to use the expected value of the amplitude as the
response is not a deterministic constant amplitude steady state trajectory, but rather a stationary
process.

The averaged equations of motion may be used to obtain an expression for amplitude-
frequency relationship of the response. Consider a stationary non-trivial stationary solution,
(ās, φ̄s) , of equation (5). By dividing the amplitude equation through by ās and taking the
expected value one gets

E [ln ās]
′ = −ε

{
ζω

ν
+

μω2

ν2
E
[
sin

(
2φ̄s − Ψ̄

)]}
,

E
[
φ̄s

]
′

=
1

2
ε

{
Δ0 +

3γω2

2ν2
E
[
ā2s
]
−

2μω2

ν2
E
[
cos

(
2φ̄s − Ψ̄

)]}
.

(8)
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Note that the order of differentiation and integration have been reversed on the left side of
both equations, which is viable since both are linear operators. Given that both of the solutions
(ās, φ̄s) are stationary processes their expection is independent of time, and therefore the time
derivative of their expectation is zero. Applying definition of Δ0 in equation (3) leads to

E
[
sin

(
2φ̄s − Ψ̄

)]
= −

ζν

μω
, (9)

ν

2ω
− 1 = ε

ω2

ν2

{
3

2
γE

[
ā2s
]
− 2μE

[
cos

(
2φ̄s − Ψ̄

)]}
. (10)

3.1. Special case: σ = 0
For the case σ = 0 the system is deterministic with a steady state solution, and therefore
expectation operators in equation (10) may be dropped. Application of the trigonometric
relationship between sine and cosine yields

ν

2ω
− 1 = ε

ω2

ν2

⎧⎨
⎩3γ

2
ā2s ∓ 2μ

[
1−

(
ζν

μω

)2
]1/2

⎫⎬
⎭ , (11)

where the ∓ sign indicates an upper and lower solution. The lower solution is shown to be
unstable in [1]. Figure 3 shows a comparison of the amplitude-frequency relationship using the
simulation of the exact equations of motion in equation (2), and the analytical approximation
in equation (11). There is a slight error due to the averaging procedure however the results are
good, although the lower (unstable) solution cannot be simulated.

3.2. Special case: high noise intensity

Figure 4 shows the Lyapunov exponent of the trivial solution along with simulated values of the
expections in equations (9) and (10). This shows that the expected value of the cosine term in
equation (10) tends to zero as the noise intensity grows. The values left of the vertical dashed
line are where the trivial solution has regained stability and the non-trivial solution has ceased
to exist and hence they are not important. The simulation of sin term also agrees very well
with the analytical result in equation (9), the small errors likely being caused by the averaging
scheme. Therefore for high noise intensity the amplitude-frequency relationship in equation (10)
simply becomes

ν

2ω
− 1 = ε

3γω2

2ν2
E
[
ā2s
]
. (12)

which implies that the upper (stable) and lower (unstable) curves converge as noise intensity
increases. This coincides with the shrinking of the region of region of trivial solution instability
as seen in Figure 2.

3.3. General case: Monte Carlo Simulation

The non-trivial stationary solutions for any noise intensity level may be obtained by Monte
Carlo simulation. The Monte Carlo simulation comes into play in the simulation of the Wiener
process for each time step. The time integration is done via Euler time stepping. The simulation
needed to run for a time period long enough to allow the trajectory to converge to the non-trivial
stationary solution.

Unfortunately simulation methods are only capable of obtaining stable non-trivial stationary
solutions as even the smallest rounding error will cause the trajectory to diverge from an unstable
solution. Figure 5 shows the amplitude-frequency relationship for changing noise intensity, load
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intensity, and nonlinearity respectively. The non-trivial solution is difficult to simulate for larger
frequency ratios where the trivial solution regains stability. This is because the simulations may
accidentally converge to the trivial solution.

3.4. Stability

The stability of the non-trivial stationary solution is much more difficult to obtain than the
trivial solution. This is because the equations of variation about the stationary solutions are
much more complex than about the original equations of motion. The Lyapunov exponents are
therefore obtained via Monte Carlo simulation.

To obtain the equations of variation the dynamics may be written about any reference
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Figure 5. Amplitude-frequency relationship vs. a) noise intensity σ, b) load intensity μ, c)
nonlinearity γ.
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Figure 6. Lyapunov exponent of non-trivial stationary solution vs. a) noise intensity σ, b)
load intensity μ, c) nonlinearity γ.

function. Choosing the reference to be the stationary solution one may write

a′s + u′ = f(as + u, φs + v)

φ′

s + v′ = g(as + u, φs + v)
⇒

u′ = f(as + u, φs + v)− a′s = f(as + u, φs + v)− f(as, φs),

v′ = g(as + u, φs + v)− φ′

s = f(as + u, φs + v)− g(as, φs).
(13)

The stability of the non-trivial solution is then given by the stability of the amplitude variation
u.

Because the equations of variation have, as there input, the stationary solutions of the original
system the stability has to be determined with a two step algorithm. The first step is to simulate
a sample stationary solution. The second step is then to use that solution as the input to the
equations of variation.

The general equations of variation are viable for both stable and unstable stationary non-
trivial solutions. However, given that only stable solutions may be simulated, this algorithm
will only work for stable solutions. Therefore if this methodology works it will always produce
negative Lyapunov exponents. There is however still much to be learned from the results because
it can yield relative stability (i.e. the magnitude of λ), and change in stability for changing noise,
load, or damping intensity.

Figure 6 shows the several Lyapunov exponent curves of the non-trivial solution for changing
noise intensity, load intensity, and nonlinearity respectively. The effect of damping was difficult
to study and is not included because the system converged to the non-trivial solution very slowly
for small damping.

Figure 6.a) shows that noise intensity tends to decrease the relative stability of the non-trivial
solution in the domain of unstable trivial solution. This is the opposite affect that it has on the
trivial solution. Figure 6.b) shows that while load intensity widens the band of trivial solution
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instability, it does not drastically change the relative stability of the non-trivial solution at a
given frequency, since all of the curves lay almost on top of each other. Finally Figure 6.c) shows
that nonlinearity slightly improves the relative stability of the non-trivial solution.

Figure 7 shows an overlay of typical amplitude-frequency relationships along with Lyapunov
exponents of the trivial and non-trivial solutions. This shows that the peak on the right side
of some of the curves is incidentally the location where the trivial solution regains stability. At
this frequency ratio it was difficult to simulate a non-trivial response as most trajectories were
attracted to the trivial attractor. At higher frequency ratios it became easier to simulate a non-
trivial response. This is possibly due to the non-trivial response diverging from the trivial one
as seen in the amplitude-frequency relationships in Figure 5. Therefore the Lyapunov exponent
curves are not accurate in the vicinity of the peak on the right, however it still serves a useful
role in indicating trivial solution stability. The region to the left of the first peak, is in fact the
stability of the trivial solution, as it is the only solution existing in this region.

4. Conclusions

Lyapunov exponents are used to determine the stability of the trivial and non-trivial solutions
of a nonlinear second order system subject to bounded noise parametric excitation. It is shown
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that damping, as expected, improves the stability of the trivial solution. Additionally noise
improves the stability of the trivial solution (i.e. the preferred pre-buckled configuration), while
reducing the relative stability of the non-trivial stationary solution. These results indicate that
the non-deterministic components in many loading scenarios such as earthquakes might stabilize
a column that would otherwise seem apt to buckle. One major drawback of the presented work
is that it applies to stationary responses, which earthquakes are most certainly not. The work
might, however, apply to sustained large wind loading events such as hurricanes.
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