
Active load path adaption in a simple kinematic

load-bearing structure due to stiffness change in the

structure’s supports

C M Gehb1, R Platz2 and T Melz1

1 System Reliability and Machine Acoustics SzM, Technische Universität Darmstadt,
Magdalenenstrasse 4, D - 64289 Darmstadt, Germany
2 Fraunhofer Institute for Structural Durability and System Reliability LBF,
Bartningstrasse 47, D - 64289 Darmstadt, Germany

E-mail: gehb@szm.tu-darmstadt.de

Abstract. Load-bearing structures with kinematic functions enable and disable degrees of
freedom and are part of many mechanical engineering applications. The relative movement
between a wheel and the body of a car or a landing gear and an aircraft fuselage are examples
for load-bearing systems with defined kinematics. In most cases, the load is transmitted through
a predetermined load path to the structural support interfaces. However, unexpected load peaks
or varying health condition of the system’s supports, which means for example varying damping
and stiffness characteristics, may require an active adjustment of the load path. However,
load paths transmitted through damaged or weakened supports can be the reason for reduced
comfort or even failure. In this paper a simplified 2D two mass oscillator with two supports is
used to numerically investigate the potential of controlled adaptive auxiliary kinematic guidance
elements in a load-bearing structure to adapt the load path depending on the stiffness change,
representing damage of the supports. The aim is to provide additional forces in the auxiliary
kinematic guidance elements for two reasons. On the one hand, one of the two supports that
may become weaker through stiffness change will be relieved from higher loading. On the other
hand, tilting due to different compliance in the supports will be minimized. Therefore, shifting
load between the supports during operation could be an effective option.

1. Introduction
Defined kinematics are often an important part of the functional performance in load-bearing
systems with moving structural components. In most cases, the load is transmitted from one or
more transmission points through a predetermined load path to the structural support interfaces.
Examples are landing gear or suspension strut compression strokes in airplanes or vehicles. In
these examples and on the one hand, a spring-damper system determines the main kinetic
properties. On the other hand, the desired strokes are supported by kinematic elements like
torque-links or other suspension links as an auxiliary structure that link two or more parts of a
primer load structure for stability reasons. The load is distributed to the structural support
interfaces as predetermined and, mostly, not subject to any change during the structure’s
lifetime. However, if properties or health conditions, e. g. damping and stiffness characteristics
or strength of the supports vary over time, load path adaption, e. g. from a weaker support
to a stronger one, could be an option to prevent the structure from failure or reduce comfort
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issues. Accordingly, it might be useful to change the load path and shift the load to the strongest
support interfaces, e. g. with controlled adaptive auxiliary kinematic guidance elements capable
to bear additional axial loading instead of passive torque-links or other suspension links.

To numerically investigate the potential of controlled active auxiliary kinematic guidance
elements in a load-bearing structure, a simplified 2D two mass oscillator with two supports is
used in this work. The adaptive functional extension of the active auxiliary kinematic guidance
elements compared to passive torque-links or other suspension-links is to adapt the load path
depending on the stiffness change of the supports.

An optimal design for the load path in a structural dynamic system like a truss with well
known loading conditions and without moving structural components has been investigated
thoroughly in literature, e. g. in [1] and [2]. In general, typical optimization parameters beside
topology are cross section areas of truss members and the shape of trusses, [3]. Another approach
for optimal truss design is possible via damage tolerance, [4]. In this approach, a simple 18-bar
truss structure is designed to not collapse despite initial damage. These approaches improve the
dynamic structural behavior and are based mainly on passive design without any external energy
that is fed into the structure for adapting purposes. With additional energy fed into a structure,
for example with actuators, a structure becomes active. However, the active approaches found
in the literature mostly aim for an improvement in vibration control or damping. In [5] and
[6], the authors used active joints with piezoelectric washers and stack actuators to improve
the damping of two connected beams and a cantilever truss structure. The adaption or change
of the load capacity was not investigated. Hence, studies to enhance the load capacity that
could lead to load path adaption were made in [7] for a simple 9-bar truss with hydraulic jacks
to apply internal forces and neuronal network as control strategy to react on unexpected high
static load. In other studies, several beams of truss structures were substituted with idealized
actuators in an academic way to enhance the load capacity by modifying the load path and to
react to unknown loads, [8] and [9]. Both approaches used actuators in active beams which were
able to change their axial length and, hence, the stiffness of the examined truss to create a fully
stressed state of all the beams in the truss. In systems with movable structural components like
landing gears or car-suspension, (semi-)active systems are used to enhance the dynamic of the
system for vibration control, mostly controlled by the sky-hook control strategy [10], [11]. Load
path adaption is again not addressed.

In this work, the simplified 2D two mass oscillator, assumed as a spring-damper-system
between a lumped mass and a rigid beam supported by two support interfaces, is used to show
the potential of load path adaption with active kinematic guidance elements numerically. Load
path adaption might be necessary when one support becomes weaker due to damage or changes
in the support’s stiffness. Moreover, undesirable tilting leads to unbalanced positions. The basic
idea is to shift loads that primarily go through the spring-damper also go through the kinematic
guidance elements, [12]. Load path adaption will be possible if active forces are applied in the
joints or hinges of the kinematic guidance elements that now become kinetic.

The simplified 2D two mass oscillator is derived from a complex load-bearing system that
is currently developed in the German Collaborative Research Center (SFB) 805 “Control
of Uncertainties in Load-Carrying Structures in Mechanical Engineering” at the Technische
Universität Darmstadt. This load bearing system is called Modular Active Spring Damper
System MASDS and is an example for a truss with integrated spring-damper system, figure 1(a).

Figure 1(a) shows the CAD model of the MASDS. The main parts are the upper and lower
truss structure, a suspension strut from a mid-range car with a coil spring and a viscous damper
as the spring-damper system, and kinematic guidance elements to realize a defined compression
stroke between the upper and lower truss. The ratio of the masses of the upper and lower truss
is similar to a typical quarter-car-model. The architecture of the whole MASDS is modular, for
example it is possible to replace the passive suspension strut by an active spring-damper system,
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Figure 1. CAD Model of the MAFDS (a) and simplified 2D two mass oscillator (b)

[13].
For the following calculations, the 3D-structure of MASDS in figure 1(a) is simplified to a

2D two mass oscillator. Figure 1(b) shows the reduced two mass oscillating system with the
guidance elements in 2D replacing the guidance elements in 3D. A lumped mass is connected to a
rigid beam by a spring-damper-system and two guidance elements. The rigid beam is supported
at its ends by support interfaces with varying damping and stiffness characteristics. The right
support is assumed to be damaged by a reduced value of its stiffness parameter. The passive
kinematic guidance elements will be replaced by active ones with active forces in the middle
joints, section 2.

In case the kinematic guidance elements are passive, their main function is to enable the
defined up-and-down compression stroke. They are not a part of the flux of forces between the
two masses in z-direction in figure 1(b). With active guidance elements and the possibility to
generate torques in the middle joints of the guidance elements a new load path can be generated,
e. g. due to a disc brake or an electrodynamic actuator. In this case, the guidance elements are
part of the flux of forces in z-direction.

In the following sections, the mathematical model of the two mass oscillator is derived and
afterwards used for the numerical simulations. If both support’s stiffnesses are the same, the rigid
beam will not tilt. With decrease of stiffness in one support, however, the passive compressions
are not balanced anymore and the beam tilts. Shifting the load away from the damaged support
with less stiffness towards the undamaged support will be an option.

In a first step, the theoretical limits of compensable stiffness difference of the supports
are calculated for the static case by the active guidance elements balancing the support’s
compression. In a second step the displacements and the reaction forces of the passive and
active system’s supports will be compared.

2. Mathematical Model of the simplified 2D-System
The dimensions and model parameter of the two mass oscillator system with three degrees of
freedom are shown in figure 2(a). It has a lumped mass mA and a rigid beam with the mass
mB with its moment of inertia Θ in x-z-plane and the associated vertical displacements in zA
and zB co-ordinates and rotation in φ co-ordinate. The masses mA and mB are symmetrically
connected by angular guidance elements 1⃝ and 2⃝ on each side of the beam at the contact
points x = a and x = l− a and a suspension strut with a coil spring and a viscous damper with
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Figure 2. Simplified 2D two mass oscillator with active moments Ma,L(t) and Ma,R(t) in the
kinematic guidance elements (a) and cut free forces (b)

stiffness kS and damping coefficient bS and at the middle of the beam x = l/2. The relative
compression stroke is zB(t) − zA(t). The beam is connected to the ground at x = 0 and x = l
by two supports represented by two springs and two dampers with stiffnesses kL and kR and
damping coefficients bL and bR for left and right side. The suspension strut and the angular
guidance elements are assumed to be free of mass. The linear displacements

zL(t) = φ(t)
l

2
− zB(t) and zR(t) = −φ(t)

l

2
− zB(t) (1)

represent the compression of the supports for small angles φ(t) with sinφ(t) ≈ φ(t). The cut
free spring force and damping force of the suspension strut are

Fk,S(t) = kS [zB(t)− zA(t)], (2a)

Fb,S(t) = bS [żB(t)− żA(t)] (2b)

and the cut free spring force and damping force of the supports are

Fk,L(t) = kL zL(t) and Fb,L(t) = bL żL(t) (3a)

Fk,R(t) = kR zR(t) and Fb,R(t)= bR żR(t) (3b)

with neglected forces in the x-direction. The combined support reaction forces and suspension
strut force are

FL(t) = Fk,L(t) + Fb,L(t), (4a)

FR(t) = Fk,R(t) + Fb,R(t), (4b)

FS(t) = Fk,S(t) + Fb,S(t). (4c)

The excitation force

F (t) =

{
0 for t < 0,

F̂ for t ≥ 0.
(5)
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is assumed as a step-function.
When considering a passive system without adaption of load path, the kinematic guidance

elements have no kinetic use and additional forces and moments do not exist. When considering
an active system with load path adaption, however, the kinematic guidance elements provide
additional active momentsMa,L(t) andMa,R(t), figure 2(a).Ma,L(t) andMa,R(t) result in vertical
active forces Fa,L(t) and Fa,R(t), figure 2(b), and are coupled by the kinematic transmission

Ma,L(t) = lkin cosα Fa,L(t), (6a)

Ma,R(t) = lkin cosα Fa,R(t) (6b)

with the length lkin of each guidance component 1⃝ and 2⃝ and the relative angle α between 1⃝
and 2⃝, figure 2(a).

A simple signal-based feedback PID-controller is implemented on the considered system. The
input variable is the actual control deviation

e(t) = zL(t)−zR(t) (7)

which is proportional to the support stiffness changes. Active control is assumed to be realized
by actuators in the guidance elements. However, the actuator’s dynamic behavior is neglected
and it is assumed that the idealized actuators convert the controller output directly into the
forces Fa,L and Fa,R. Hence, the controller’s output forces with e(t) for the left and ē(t) = −e(t)
for the right guidance elements are

Fa,L(t) = KP e(t) +KI

∫
e(t) dt+KD

d e(t)

dt
, (8a)

Fa,R(t) = KP ē(t) +KI

∫
ē(t) dt+KD

d ē(t)

dt
. (8b)

In (8), KP is the gain of the proportional component, KI is the gain of the integral component
and KD is the gain of the derivation component. KP, KI and KD are the tunable parameters of
the PID-controller. They are determined by the Ziegler-Nichols tuning method and from that
base fine-tuned empirically, [14].

According to the direction of cutting forces (2) and (3) in figure 2(b) the linear equation of
motion for the upper mass mA becomes

mAz̈A(t) + bS[żA(t)− żB(t)] + kS[zA(t)− zB(t)] = −F (t) + Fa,L(t) + Fa,R(t) (9)

and for the beam mB,Θ

mBz̈B(t) + bS[żB(t)− żA(t)] + kS[zB(t)− zA(t)]− kL[φ(t)
l

2
− zB(t)]− bL[φ̇(t)

l

2
...

−żB(t)]− kR[−φ(t)
l

2
− zB(t)] + bR[φ̇(t)

l

2
− żB(t)] = −Fa,L(t)− Fa,R(t)

(10a)

Θφ̈(t) + kL
l

2
[φ(t)

l

2
− zB(t)] + bL

l

2
[φ̇(t)

l

2
− żB(t)]− kR

l

2
[−φ(t)

l

2
− zB(t)]...

− bR
l

2
[φ̇(t)

l

2
− żB(t)] = (

l

2
− a)Fa,L(t)− (

l

2
− a)Fa,R(t)

(10b)
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for translational directions zA(t) and zB(t) as well as for rotational direction φ(t), [15].
Equation (9) and (10) are combined to a linear equation of motion system to become

mA 0 0
0 mB 0
0 0 Θ


︸ ︷︷ ︸

M

z̈A(t)z̈B(t)
φ̈(t)


︸ ︷︷ ︸
r̈(t)

+


bS −bS 0

−bS bS+bL+bR − l

2
bL+

l

2
bR

0 − l

2
bL+

l

2
bR

l2

4
bL+

l2

4
bR


︸ ︷︷ ︸

D

żA(t)żB(t)
φ̇(t)


︸ ︷︷ ︸
ṙ(t)

+...


kS −kS 0

−kS kS+kL+kR − l

2
kL+

l

2
kR

0 − l

2
kL+

l

2
kR

l2

4
kL+

l2

4
kR


︸ ︷︷ ︸

K

zA(t)zB(t)
φ(t)


︸ ︷︷ ︸
r(t)

=

 −F (t) + Fa,L(t) + Fa,R(t)
−Fa,L(t)− Fa,R(t)

(
l

2
− a)Fa,L(t)− (

l

2
− a)Fa,R(t)


︸ ︷︷ ︸

F (t)

.

(11)

In (11), M , D and K are the global mass, damping and stiffness matrices, r̈(t), ṙ(t), r(t) and
F (t) are the acceleration, velocity, displacement and force vectors. The force vector F (t) in (11)
contains the excitation force and the active forces Fa,L(t) and Fa,R(t) provided by the active
guidance elements in figure 2(b).

The support’s reaction forces FL(t) and FR(t) and displacements zL(t) and zR(t) of the
supports at x=0 and x=l need to be calculated to investigate the ability to load path adaption,
respectively re-direction. For that, it is necessary to solve (11) in time domain numerically. In
state space representation, (11) becomes

ẋ(t) =

[
0 I

−M−1K −M−1D

]
︸ ︷︷ ︸

[6×6]

x(t) +

[
0

M−1Ba

]
︸ ︷︷ ︸

[6×2]

u(t) +

[
0

M−1 bext

]
︸ ︷︷ ︸

[6×1]

F (t)

y(t) =



0 −1
l

2
0 0 0

0 1
l

2
0 0 0

0 −kL
l

2
kL 0 −dL

l

2
dL

0 kL
l

2
kL 0 dL

l

2
dL


x(t) =


zL(t)
zR(t)
FL(t)
FR(t)


(12)

with the [6 × 1] state vector x(t) = [r(t), ṙ(t)]T and zero and identity matrices 0 and I of
appropriate dimensions. The active forces Fa,L(t) and Fa,R(t) and the external excitation force
F (t) are allocated to the system by the [6 × 2] control input matrix and the [6 × 1] excitation
input vector

Ba =



0 0
0 0
0 0
1 1
−1 −1

(
l

2
− a) −(

l

2
− a)


and bext =


0
0
0
1
0
0

 . (13)

The active forces are summarized in control input vector

u(t) =

[
Fa,L(t)
Fa,R(t)

]
. (14)
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In short form, (12) is

ẋ(t) = Ax(t) +Ba u(t) + bext F (t)

y(t) = C x(t)
(15)

representing the state space model of the two mass oscillator with three degrees of freedom and
active forces provided by the kinematic guidance elements. The time response of the reaction
forces FL(t) and FR(t) and displacements zL(t) and zR(t) of the supports are chosen as output
y(t), section 3. For deriving the dynamic equations for the two mass oscillator with controlled
forces in its guidance elements, the right support is assumed to be damaged with reduced stiffness
as described above. Because of this, only the left guidance element need to be active and with
that Fa,R(t) ≡ 0.

3. Numerical simulation of load path adaption
In this section, numerical simulations of the two mass oscillator are presented to prove its load
path adaption capability. First, the theoretical limits of the compensable stiffness change for
the static case is presented. Second, three cases for one example configuration with undamaged
and damaged support are compared.

3.1. Theoretical limits of load path adaption in static case
The aim for the active kinematic guidance elements in the case of assumed stiffness change is

to minimize the difference of the vertical support displacements e(t)
!
= 0, cf. (7). Hence, full

compensation of stiffness difference by means of the active guidance elements is achieved for
e(t) = 0. However, a theoretical limit for the full compensation e(t) = 0 of stiffness change
can be calculated for the time-independent static case. To satisfy e = 0 time-independent, the
vertical support displacements have to be equal zL = zR. With that and all time derivations of
the degrees of freedom take a value of zero, the combination of (1), (4) and (10) leads to

kL
kR

=

Fa,L

FS
+ 1

a

l

Fa,L

FS
+

1

2

− 1 (16)

respectively

κ =
Λ+ 1

ξ · Λ +
1

2

− 1. (17)

To discuss the limit, the support stiffnesses difference is converted into the ratio of the stiffnesses
κ = kL/kR, plotted on the vertical axis in figure 3. The ratio Λ = Fa,L/FS of the maximal
assumed active force of the guidance element and the suspension strut force is given by the
relation of Fa,L and FS. The geometrical dimensions, particularly the contact points of the
active guidance elements on the beam are taken into account by ξ = a/l.

All parameter combinations of κ, ξ and Λ leading to a point above the surface in figure 3, full
compensation of the stiffness difference by means of active guidance elements is not possible,
e = zL−zR ̸= 0 meaning that load redistribution is not sufficient for full compensation. All
parameter combinations of κ, ξ and Λ leading to a point on or under the surface in figure 3, full
compensation of the stiffness difference is possible, e = zL−zR = 0.

No difference in stiffness is given for κ = 1 which represents the undamaged system. In this
case no load path adaption is needed. The higher κ, the higher the stiffness difference of the
supports. The lower ξ, the closer is the contact point to the support and the capability of load
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path adaption increases. The higher Λ, the higher is the maximum active force Fa,L compared to
the suspension strut force FS. With higher Λ the capability of load path adaption increases. In
the following, one example configuration was chosen to simulate a system with step-excitation
in time domain.

0
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0
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0.2
0.3

0.4
0.5

1

10

20

 

Λ = Fa,L/FSξ = a/l 

κ = kL/kR

Figure 3. Limit of compensation of stiffness difference due to active load path adaption, for
the area above the surface, compensation is not sufficient for e = 0

3.2. Step excitation and numerical results in time domain for an example configuration
The displacement difference e(t) = zL(t)− zR(t) and the reaction forces FL(t) and FR(t) of the
left and right support are shown in figures 4-7 as a result of a numerical simulation in time
domain to prove the theoretic capability of the active force Fa,L(t) to shift load from the weaker
support to the stronger one. Three different cases are investigated:

i) both supports have equal stiffnesses κ = 1, the system is passive and assumed to be without
auxiliary kinetic function of the guidance elements,

ii) right support is assumed to be damaged with lower stiffness and κ = 2, the system is passive
and assumed to be without auxiliary kinetic function of the guidance elements,

iii) right support is assumed to be damaged with lower stiffness and κ = 2, the system is active
and assumed to be with auxiliary kinetic function of the guidance elements.

For all cases i)-iii), the step excitation (5) with F̂ = 1000 N is applied to the system. Table 1
summarizes all properties of the two mass oscillator.

The displacement difference e(t) = zL(t)−zR(t) according to the output y(t) in (15) for all three
cases are shown in figure 4. In case i), the undamaged system without any stiffness difference,
the displacement difference is e(t) = zL(t)−zR(t) = 0. Case ii) leads to a displacement difference
e(t) = zL(t)−zR(t) ̸= 0 for the whole simulation time t = 0 to 1.5 s and a constant steady state
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Table 1. Parameters for 2D two mass oscillator with κ = 2 and ξ = 0.25.

property symbol value unit

damping suspension bS 1100 Ns/m
stiffness suspension kS 27000 N/m
stiffness support left kL 500000 N/m
stiffness support right kR 500000 N/m
stiffness support right, damaged kR 250000 N/m
mass A mA 40 kg
mass B mB 200 kg
moment of inertia Θ 16.7 kgm2

beam length l 1 m
contact point a 0.25 m

excitation step F̂ 1000 N

displacement difference for t > 1 s after oscillations are damped out can be observed. In case
iii) it seems possible to reduce the displacement difference after a transient oscillation again to
zL(t)−zR(t) = 0 for t > 1 s by means of active guidance elements.
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case i)
case ii)
case iii)

Figure 4. Numerical simulation of the displacement difference zL(t)−zR(t) in the supports with
κ = 1 to 2 and ξ = 0.25

Figure 5 shows the support’s reaction forces FL(t) and FR(t) for case i). The load is evenly
distributed to both supports and the time responses of both reaction forces are similar. After the
oscillations are damped out, the excitation load of F̂ = 1000N is evenly split and both supports
are loaded with 500N. High Peak of 790N is observed before the oscillations are damped.

Figure 6 shows the support’s reaction forces FL(t) and FR(t) for case ii). The load is evenly
distributed to both supports and the reaction forces are similar for t > 1 s after oscillations
are damped out. Peak forces in the left and right support are different. In the steady state
t > 1 s, the excitation load of F̂ = 1000N is again evenly split and both supports are loaded
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Figure 5. Numerical simulation of the reaction forces FL(t) and FR(t) in the supports for the
undamaged system with κ = 1 and ξ = 0.25, case i)

with FL(t) = FR(t) = 500N. Even though, the displacement difference of the supports is
e(t) = zL(t)−zR(t) ̸= 0, cf. figure 4. Beside the displacement difference, the oscillation phase
regarding the load peaks of both supports is not equal any more as consequence of supports
with different stiffnesses, κ = 2.
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Figure 6. Numerical simulation of the reaction forces FL(t) and FR(t) in the supports for the
damaged and passive system with κ = 2 and ξ = 0.25, case ii)

Figure 7 shows the support’s reaction forces FL(t), FR(t) and the active force Fa,L(t)
calculated by the controller in (8) for case iii). The load is not evenly distributed to both supports
and the reaction forces FL(t) and FR(t) differ at all the times 0 ≤ t ≤ 1.5 s, FL(t) ̸= FR(t).

For t ≤ 1 s, the excitation load F̂ = 1000N is not evenly split and both supports are loaded
differently corresponding to their stiffnesses. The displacement difference of the supports is
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again zL(t)−zR(t) = 0 for t > 1 s, cf. figure 4. It can be seen that the active guidance elements
are indeed changing the load path between the transmission point of the excitation force and
the supports.
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Figure 7. Numerical simulation of the reaction forces FL(t) and FR(t) in the supports for the
damaged and active system with κ = 2 and ξ = 0.25, case iii)

4. Conclusions
This paper shows the potential of active auxiliary kinetic guidance elements in a simple two mass
oscillator to adapt the load path with the guidance elements according to different stiffnesses of
the supports by numerical simulation. The stiffness changes represent changing health condition
of the elastic supports. Considering figures 4-7, it can be seen that active kinetic guidance
elements has potential to provide an alternative load path in a load-bearing system and can be
used to shift load from one support to another. In a first step the limits for a static load path
adaption are shown depending on geometric and dynamic properties. The maximum difference
of the stiffnesses that can be compensated depends on the geometric values and the active
forces provided by the kinetic guidance elements. After that, in three cases the displacement
difference and reaction forces of the two mass oscillator’s supports are compared in numerical
simulations in time domain with step excitation: in the first case, both supports are assumed
to be undamaged with equal stiffnesses, the system remains passive without auxiliary kinetic
function of the guidance elements. The load is evenly distributed to both supports, no active
force is needed. In the second case, the right support is assumed to be damaged with reduced
stiffness, the system remains passive without auxiliary kinetic function of the guidance elements.
The stiffness difference leads to displacements difference of the supports if the load path is not
controlled. In the third case, the right support is assumed to be damaged with reduced stiffness,
the system is assumed to be active with auxiliary kinetic function of the guidance elements. The
displacements difference of the supports and the tilt of the beam can be extinguished. This is
possible by changing the load path by means of the active guidance elements. The damaged
support is relieved. In future work, the model will be more detailed, e. g. the actuator behavior.
Moreover, the results of this paper will be verified with experimental results.
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