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Abstract. Helical springs within the primary suspension are critical components for isolating 

the whole vehicle system from vibration generated at the wheel/rail contact. As train speeds 

increase, the frequency region of excitation becomes larger, and a simplified static stiffness can 

no longer represent the real stiffness property in a vehicle dynamic model. Coil springs in 

particular exhibit strong internal resonances, which lead to high vibration amplitudes within the 

spring itself as well as degradation of the vibration isolation. In this paper, the dynamic 

stiffness matrix method is used to determine the dynamic stiffness of a helical spring from a 

vehicle primary suspension. Results are confirmed with a finite element analysis. Then the 

spring dynamic stiffness is included within a vehicle-track coupled dynamic model of a high 

speed train and the effect of the dynamic stiffening of the spring on the vehicle vibration is 

investigated. It is shown that, for frequencies above about 50 Hz, the dynamic stiffness of the 

helical spring changes sharply. Due to this effect, the vibration transmissibility increases 

considerably which results in poor vibration isolation of the primary suspension. Introducing a 

rubber layer in series with the coil spring can attenuate this effect. 

1.  Introduction 

When a train is running on a track, vibration is transmitted from the wheel/rail contacts to the vehicle 

structure through the primary and secondary suspensions. It is widely accepted that the suspension 

components can isolate and reduce most of the high frequency vibration transmission from the 

wheel/rail interaction. Helical springs are widely used in the primary suspension of high-speed trains. 

However, most methods of railway vehicle dynamic modelling ignore the structure and inertia of the 

springs. However, as the train speed increases, the excitation from the wheel/rail interaction extends to 

higher frequencies, which means that internal resonances of the spring itself can no longer be 

neglected. A number of fractures of helical springs of high speed trains and locomotives have occurred 

recently in China which may be linked to this phenomenon [1]. Moreover, due to the internal 

resonances, the considerable dynamic stiffening of the spring occurs. Normally, the suspension spring 

is considered as a simplified static stiffness, which is valid within the frequency range up to 20 Hz [2], 
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but in fact the dynamic stiffness varies a lot at higher frequencies. The dynamic stiffening effect of the 

suspension system is considerably enhanced with the increase of vehicle speed. It should therefore be 

introduced into railway vehicle vibration simulation, and the effect of the dynamic stiffness on the 

vibration transmission property of the whole vehicle should be investigated.  

There is much previous research about the wave effect and dynamic stiffness property for a single 

coil springs. For example, Wittrick [3] obtained an approximate solution by regarding the spring as a 

Timoshenko beam to establish linear differential equations. Mottershead [4] obtained the exact 

solution of the static problem by using finite element method. Lee and Thompson [5] used the 

dynamic stiffness matrix approach to obtain the natural frequencies and dynamic stiffness of coil 

springs. The results show the significant dynamic stiffening effect in helical springs. For the studies of 

coil springs as suspension components, Fu and Wang [6] used shock wave transmission theory to 

establish the dynamic model of a coil spring suspension of an automobile in order to obtain the 

vibration responses at high frequencies more accurately. Zhang and Yu [7] applied the method of four-

end parameters to study the influence of coil spring standing wave effect on suspension vibration 

transmission property. The wave effect increased vibration peaks of the car body considerably. These 

applications are mostly automotive but so far, no studies have been carried out on the influence of the 

dynamic stiffness of helical springs within the primary suspension on the high frequency vibration of 

railway vehicle systems.  

For this purpose, this paper aims to establish a reasonable dynamic model to represent the dynamic 

stiffening property of a coil spring within the primary suspension of a railway vehicle. The dynamic 

stiffness matrix method based on [5] is used to determine the stiffness values of helical springs as a 

function of excitation frequency. Its influence on the vibration transmission from the wheelsets to the 

bogie and vehicle body is studied. The present work includes the coil spring model into a high 

frequency dynamic model of a high speed train vehicle system. A track irregularity spectrum is 

considered as the input and the influence of dynamic stiffness of the helical springs within the primary 

suspension on the dynamic behaviour of the railway vehicle is investigated. The vibration responses of 

the bogie and flexible car body are both obtained. 

2.  Dynamic stiffness model of helical spring 

2.1.  Dynamic stiffness matrix of helical spring 

The dynamic stiffness model of the helical spring is based on [5]. The relation between the local 

coordinates and global coordinates of the coil spring is shown in Figure 1. ϕ is the conversion angle 

between the local and global coordinates. s is the coordinate along the coil spring length. α is the 

helical angle of the spring. 

 

Figure 1.  Co-ordinate system of a coil spring 

The global coordinates can be expressed as follows: 

 
tan cos tan

, ,z
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    （1） 

where D is the mean diameter of the spring.  
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When the dynamic loads act on the coil spring, they will generate internal forces and torques in 

three directions and displacements and rotations in three directions. According to the static equilibrium 

equation of D’Alembert’s principle combined with system inertial force, the partial differential 

equation of the dynamic system can be obtained as follows: 
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 （2） 

where A, B are coefficient matrices related with the structural and material properties of the coil spring, 

δ is the 6x1 vector containing displacements and rotations; p is the 6x1vector of internal forces and 

moments; both are functions of s.  

 Equation (2) can be simplified to get a relation between the loads and displacements of the spring 

as follows: 

            
1 1

12 11 12p A A A
s

 
  

  


 （3） 

A wave in the spring consists of temporal and spatial variation. According to the wave motion 

theory, if the responses of the wire element are harmonic in time, the displacements and forces for a 

free wave can be written as: 
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where  and P are the vectors of complex amplitudes. Substituting equation (4) into equation (2), the 

equation can be written as follows: 
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At a given frequency ω, equation (5) can be solved as an eigenvalue problem to find 12 

eigenvalues ki and the corresponding eigenvector matrix [Φ]. 

In order to get the point stiffness and transfer stiffness of the helical spring, the force and 

displacement vector of the two ends are given as follows: 
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 （6） 

where s=0 and s=L are the helical spring positions of the two ends. The dynamic stiffness vector can 

be obtained through the relation between the force vector F and the displacement vector U of the two 

ends. 

According to the linear superposition method, the displacement vector of the spring can be 

expressed as a sum of 12 different waves: 

        
12

1

ik s i t i t

i i i
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where, ai is the amplitude of each wave and E is a diagonal matrix containing the exponential terms of 

the form eks. 

According to equation (7) and equation (3), the force vector can be written as: 
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It is assumed that one end is fixed and the other end is subject to displacement excitation in the 

axial direction which means U only has one non-zero component. The force vector F at the two ends 

can be calculated with equations (6) and (8) and hence the point and transfer dynamic stiffnesses can 

be obtained. The spring point and transfer dynamic stiffnesses Kp and Kt in the axial direction are 

defined as follows: 

 ,b t
p t

b b

F F
K K

z z
    （9） 

where Fb, Ft are the axial forces at the bottom and top of the spring respectively and zb is the excitation 

displacement amplitude at the bottom. These stiffness values will be used for the railway vehicle 

dynamic analysis in the next section; the components in other directions will be neglected. 

2.2.  Dynamic stiffness results and comparison with FE model 

2.2.1 Spring parameters 

The primary suspension studied here is installed with a spring set (two springs) which can take a larger 

load than a single one. To avoid interference between the different springs and over-torsion of the 

interacting surfaces, the spring set is normally made up of one left-handed spring and one right-handed 

spring. The equivalent combined stiffness is the sum of the two spring stiffnesses. The deformations of 

the two springs are equal. So the total load is the sum of the loads on the two springs which are related 

to their own stiffness. 

Normally, it is assumed that the helical spring only takes axial loads and the influence of its helical 

angle is ignored. The vertical simplified static spring stiffness [8] can be calculated as follows: 

 

4

38
s

F Gd
K

f nD
   （10） 

where f is the vertical deflection of the spring, G is the shear modulus, d is the diameter of spring wire, 

n is the effective number of spring circles. The parameters of the two springs within the primary 

suspension of a railway vehicle are listed in Table 1.  

Table 1.  Parameters of coil springs set in axle box 

Parameter Outer Inner 

Orientation right left 

Number of active coils n 3.2 5.0 

Wire diameter d (mm) 39.5 28.5 

Spring diameter D (mm) 239.4 156.0 

Free height H (mm) 306.0 304.6 

Static height H0 (mm) 240 240 

Shear modulus G (N/mm2) 78500 78500 

Damping loss factor  0.001 0.001 

Poisson ratio λ 0.3 0.3 

Shear correction factor κs 0.75 0.75 

Simplified vertical stiffness ks (N/mm) 537.2 348.7 

Mass m (kg) 30 12 
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2.2.2 Finite element model 

According to the geometric model of the springs shown in Figure 2, finite element models of the outer 

and inner springs have been established with beam elements to confirm the results of dynamic 

stiffness matrix method. There are 1235 nodes and 1234 elements in the outer spring model and 1239 

nodes and 1238 elements in the inner spring model in total. In this model, six degrees of freedom at 

one end are all constrained, and a displacement with amplitude 1 mm in the axial direction is input at 

the other end with excitation frequencies from 0 to 1000 Hz. The reaction forces at both ends can be 

obtained and then point and transfer stiffnesses are derived through the ratio of the forces and the input 

displacement.  

      

Figure 2. Geometric model of helical springs 

Figure 3 shows the modeshapes of the first five modes of inner spring with fixed-free boundary 

condition. Modes 1 and 2 are predominantly lateral and modes 3 and 4 are extensional. Mode 5 is 

torsional. 42.05 Hz is the modal frequency of mode 3 which is a vertical extensional mode. Similar 

results are observed for outer spring. The first vertical extensional modal frequency of outer spring is 

38.96Hz. It can be seen clearly that each spring has its internal resonance characteristics. 

    

Figure 3. Mode shapes of inner spring with fixed-free boundary condition    

2.2.3 Dynamic stiffness results 

Figure 4 shows point dynamic stiffness results of the two individual springs obtained with the dynamic 

stiffness matrix method and FE simulation. The two results are almost identical. The stiffness has a 

constant quasi-static value at low frequencies, 348.7 N/mm for the inner spring and 537.2 N/mm for 

the outer spring. Then above about 10 Hz the stiffness decreases. The first dips of the point stiffness of 

the inner and outer springs occur at about 42 Hz and 39 Hz, which are the first vertical extensional 

frequency of each spring. Because many internal resonances of the two springs are excited with the 

increase of frequency, a series of peaks and dips occur at high frequencies. The stiffness values change 

in a very large range between 1 N/mm and 106 N/mm.   
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(a) Inner spring                                                   (b) Outer spring 

Figure 4. Point dynamic stiffness of helical springs FE model; dynamic stiffness matrix. 

The transfer dynamic stiffness is shown in Figure 5. This generally increases at high frequencies, 

similar to the point dynamic stiffness. The results of the FE model and dynamic matrix method again 

show good agreement. Comparing with the outer spring, the inner spring has a smaller diameter and 

more circles. There are more resonances of the inner spring below 1000 Hz than for the outer spring.  

 
(a) Inner spring                                                 (b) Outer spring 

Figure 5. Transfer dynamic stiffness of helical springs FE model; dynamic stiffness matrix. 

3.  Vibration responses of railway vehicle 

Besides the coil spring set, when installed in the vehicle there is a rubber layer beneath the steel spring 

set. This is used for absorbing shocks and decreasing the stress of the steel material. The structure of 

the rubber layer spring within the primary suspension is shown in Figure 6. These two parts are 

installed in series. The upper end of the suspension is connected to the bogie frame by bolts, while the 

bottom one is located on the upper surface of axle box. The vertical stiffness of the rubber layer used 

here is 10 kN/mm and the damping loss factor is 0.25. The stiffness value of the primary suspension 

should be calculated from the superposition of the coil spring set and rubber layer in series. 

 

Figure 6.  Rubber layer spring of primary suspension 
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A vehicle-track coupled dynamic model is established to obtain the vibration responses of the 

system using the Green’s function method to solve the flexible car body dynamic model [9]. A high-

speed railway track irregularity spectrum corresponding to the speed of 250km/h is considered as the 

input [10]. All vibration responses of the railway vehicle are calculated with different suspension 

models: the static spring stiffness, the dynamic stiffness model of the coil spring unit and the 

combined dynamic stiffness of this unit and the rubber layer.  

Figure 7 shows the vibration power spectral densities (PSDs) of bogie and car body with the 

different models. Along with the change of dynamic stiffness of the helical springs above 38 Hz, high 

frequency vibrations of both bogie and car body significantly increase. Compared with the static 

stiffness spring model, there are many peaks with the dynamic spring model. The vibration energies of 

the vehicle structures at high frequencies become greater due to the dynamic stiffening of the primary 

suspension. For the dynamic stiffness spring model with rubber layer, the value of each peak decreases 

because of the damping and stiffness of the rubber layer, but the vibrations are still stronger than those 

of the static spring model.   

 

     (a) Bogie                                      (b) Flexible car body centre 

  

(c) Flexible car body above bogie 1         (d) Flexible car body above bogie 2 

Figure 7. Vibration responses of three models static spring;  dynamic spring;  dynamic 

spring with rubber layer. 

From the above, it can be seen the dynamic stiffening effect of the primary springs causes the high 

frequency vibrations of the car body and bogie increase. When wave motions in the spring are 

included in the dynamic model, the primary suspension acts differently from when it is considered as a 

simplified static stiffness. The rubber layer applied in series with the coil spring can suppress the worst 

vibration peaks at high frequencies. In order to reduce the vibration of the railway vehicle, the 

dynamic stiffness of the helical springs within the primary suspension should be controlled. The 

design of the rubber layer is very important to achieve this. 

4.  Conclusions 

In this paper, the dynamic stiffness matrix method is used to determine the dynamic stiffness of a 

helical spring from a railway vehicle primary suspension. Coil springs in particular exhibit strong 
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internal resonances, which lead to high vibration amplitudes within the spring itself as well as 

degradation of the vibration isolation. Then the spring dynamic stiffness is introduced into a vehicle-

track coupled dynamic model of a high speed train and the effect of the dynamic stiffening of the 

spring on the vehicle vibration is investigated. It is shown that, for frequencies above the first natural 

frequency of the helical spring, the dynamic stiffness changes dramatically. The vibrations of both 

bogies and flexible car body increase considerably at high frequencies. Introducing a rubber layer in 

series with the coil spring can attenuate this effect. 
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