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Abstract. Porous materials have recently been used in absorptive treatments around railway 

tracks to reduce noise emissions. To investigate the effect of porous materials, a finite element 

model has been developed. 2D models for porous materials have been considered either as an 

equivalent fluid or as a poroelastic material based on the Biot theory. The two models have 

been validated and compared with each other to check the effect of the skeleton vibration. The 

poroelastic FE model has been coupled with a 2D acoustic boundary element model for use in 

railway applications. The results show that it may be necessary to include the frame vibration, 

especially at low frequencies where a frame resonance occurs. A method for the 

characterization of porous materials is also discussed. From this it is shown that the elastic 

properties of the material determine the resonance frequency and the magnitude. 

1.  Introduction 

The dominant source of noise from railways is rolling noise, which is generated by the surface 

roughness of the rail and the wheel. Both the wheel and the track radiate noise through their vibration 

and their relative importance depends on various parameters such as the roughness spectrum, the train 

speed and the design of each component. Nonetheless the track component is often higher than the 

wheel component. 

To reduce rolling noise, various measures have been developed and applied to some of the railways 

in operation [1]. Absorption is one of the main principles which is exploited when designing noise 

barriers or absorptive blocks. Porous materials are usually used in such absorptive treatments. 

When analysing the performance of an absorptive treatment around the track the boundary element 

method is usually used as a numerical method [2, 3]. In this approach porous materials can be 

effectively treated as an impedance boundary. However, when they are mounted close to the rail or 

become parts of the railway track, it could be important to consider the elasticity of the material in the 

analysis, as the frame vibration could also radiate noise, rather than just absorb it. Therefore, a finite 

element model based on the Biot theory [4, 5] has been developed here and coupled to the acoustic 

boundary element method, which is used to model other components of the track. 

Section 2 describes the theory and formulation of the finite element models for porous materials. 

Two representative models are introduced. One is the rigid frame model, which treats the porous 
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medium as an equivalent fluid. In this model the frame is assumed to be rigid. The other is the elastic 

model, which allows the frame to move. A numerical modelling approach based on Atalla’s work [6] 

has been implemented. This is coupled to the 2D acoustic boundary element model in Section 3 and 

the coupled model has been validated for both internal and external problems. Section 4 presents 

experimental methods for the characterisation of porous materials. 

2.  Finite element models for porous materials 

2.1.  Sound propagation in porous media having a rigid frame 

When sound propagates through a porous medium, it loses energy due to viscous and thermal 

dissipation. In order to take this into account, parameters such as porosity, tortuosity and flow 

resistivity have been defined and used to characterise the dissipation mechanism. However, due to its 

inherent geometric complexity, it is hardly possible to describe the whole process analytically. For this 

reason, most of the research on porous materials has been based on phenomenological descriptions at 

large scale. In addition, frequency analysis is widely used. Such analysis starts from evaluating 

velocity and pressure in the pores, to treat the porous material as an equivalent fluid. The equivalent 

fluid is described by the acoustic wave equation with the density and bulk modulus replaced by a 

frequency-dependent effective density and bulk modulus. A range of models for effective density and 

bulk modulus have been proposed, and the validity of these models has also been discussed in [7]. The 

material is assumed to be isotropic for simplicity. The effective density and bulk modulus can be 

written as [7] 

𝜌 = 𝜌0 [𝛼∞ +
𝜈𝜙

𝑗𝜔𝑞0
𝐺(𝜔)] (1) 

𝐾 = 𝛾𝑃0/ [𝛾 −
𝛾 − 1

1 +
𝜈′𝜙
𝑗𝜔𝑞0

′ 𝐺′(𝜔)
] (2) 

where 𝛼∞ is the static tortuosity, 𝜈 is the kinematic viscosity, 𝜙 is the porosity, 𝑞0 is the static 

permeability, 𝛾 is the ratio of specific heats, 𝑃0 is the ambient pressure, ν′ is the thermal viscosity, and 

𝑞0
′  is the static thermal permeability. 𝐺(𝜔) and 𝐺′(𝜔) are frequency-dependent functions evaluated by 

the models. In this paper, the models of Johnson et al. [8] and Champoux-Allard [9] have been used 

for the density and the bulk modulus, respectively. The equations for 𝐺 and 𝐺′ are 

𝐺(𝜔) = [1 + (
2𝛼∞𝑞0

𝜙𝛬
)
2 𝑗𝜔

𝜈
 ]

1/2

 (3) 

𝐺′(𝜔) = [1 + (
𝛬′

4
)

2
𝑗𝜔

𝜈′
 ]

1/2

 (4) 

where 𝛬 and 𝛬′ are the viscous and thermal characteristic lengths. As mentioned above, the equivalent 

fluid has the same governing equation as the acoustic wave equation. Thus it could be used directly in 

the acoustic finite element formulation with the modified density and bulk modulus.  

2.2.  Sound propagation in porous media having an elastic frame 

2.2.1.  Outline of the theory. The governing equations of the sound propagation in poroelastic 

materials are given by the Biot theory [4, 5]. To make the problem as simple as possible, the structure 

of the porous material is assumed to be isotropic. Also, the deformation of the frame is supposed to be 

like that of an elastic solid so that the air-frame interaction can be approximated similarly to that of a 

rigid porous medium. Later, Atalla [6] put the equations in another form for an easier numerical 

implementation. These modified equations are 
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𝛁 ∙ 𝝈̂s + 𝜔2𝜌̃𝒖 + 𝛾̃𝛁𝑝 = 0 (5) 

𝛁2𝑝 + 𝜔2
𝜌̃22

𝑅
𝑝 − 𝜔2

𝜌̃22

𝜙2
𝛾̃𝛁 ∙ 𝒖 = 0 (6) 

where 𝝈̂s is the modified stress tensor using the Biot coefficients, 𝒖 is the displacement of the 

skeleton, 𝑝 is the fluid pressure in the pores, 𝜌̃ are the effective densities, and 𝛾̃ is related to the 

coupling between solid and fluid. A detailed description of the variables can be found in [7]. In each 

equation, the first two terms describe its motion without the effect of the other, and the third term is 

related to coupling between the two phases. 

2.2.2.  Numerical implementation. Weak integral forms are obtained by imposing an admissible 

displacement into Equation (5) and pressure into Equation (6), respectively. A detailed derivation is 

given in [6]. The results are  

∫𝝈̂s(𝒖) ∶ 𝝐s(𝛿𝒖)𝑑𝑉
𝑉

− 𝜔2 ∫𝜌̃𝒖 ∙ 𝛿𝒖𝑑𝑉
𝑉

− ∫𝛾̃𝜵𝑝 ∙ 𝛿𝒖𝑑𝑉
𝑉

− ∫ [𝝈̂s ∙ 𝒏] ∙ 𝛿𝒖𝑑𝛺
𝛺

= 0 (7) 

∫ [
𝜙2

𝜔2𝜌̃22
𝜵𝑝 ∙ 𝜵𝛿𝑝 −

𝜙2

𝑅
𝑝𝛿𝑝] 𝑑𝑉

𝑉

− ∫𝛾̃𝜵𝛿𝑝 ∙ 𝒖𝑑𝑉
𝑉

+ ∫ [𝛾̃𝑢n −
𝜙2

𝜌̃22𝜔
2

𝜕𝑝

𝜕𝑛
]𝛿𝑝𝑑𝛺

𝛺

= 0 (8) 

where 𝒖 is the displacement of the solid and 𝑝 is the interstitial fluid pressure in the pores. The 

corresponding matrices are 

∫𝝈̂s(𝒖) ∶ 𝝐s(𝛿𝒖)𝑑𝑉
𝑉

→ {𝛿𝑢𝑖}
T[𝐾]{𝑢𝑖} (9) 

∫𝜌̃𝒖 ∙ 𝛿𝒖𝑑𝑉
𝑉

→ {𝛿𝑢𝑖}
T[𝑀]{𝑢𝑖} (10) 

∫𝛾̃𝜵𝑝 ∙ 𝛿𝒖𝑑𝑉
𝑉

→ {𝛿𝑢𝑖}
T[𝐶̃]{𝑝𝑖} (11) 

∫
𝜙2

𝜌̃22
𝜵𝑝 ∙ 𝜵𝛿𝑝𝑑𝑉

𝑉

→ {𝛿𝑝}T[𝐻]{𝑝𝑖} (12) 

∫
𝜙2

𝑅
𝑝𝛿𝑝𝑑𝑉

𝑉

→ {𝛿𝑝}T[𝑄]{𝑝𝑖} (13) 

After substituting these into the original equations, the following coupled system is obtained: 

[
[𝐾] − 𝜔2[𝑀] −[𝐶̃]

−𝜔2[𝐶̃]
T

[𝐻] − 𝜔2[𝑄]
] {

𝑢𝑖

𝑝𝑖
} = {

𝐹s

𝐹f
} (14) 

where 𝑀 and 𝐾 are the effective mass and stiffness matrices for the solid, 𝐻 and 𝑄 are the equivalent 

kinematic and compression energy matrices for the fluid, 𝐶̃ is the coupling matrix, 𝐹s and 𝐹f are the 

loading vectors. For the poroelastic finite element, it is recommended to have more than 12 elements 

in one wavelength [10-12]. 

3.  Coupling with the acoustic boundary element formulation 

A standard 2D acoustic boundary element formulation has been used as presented in [13]. The matrix 

equation is given as 

[
[𝐻] −[𝐺]
[𝐶𝐴] [𝐶𝐵]

] {
𝑝
𝑣n

} = {
0
𝐶𝐶

} (15) 

The first row is obtained from the Kirchhoff-Helmholtz boundary integral equation and the second 

row represents the boundary conditions. At the interface, continuity boundary conditions must be 

satisfied. This is detailed in [14]. For most porous materials, all the boundary integral terms vanish 

when the material is coupled to air. The only thing to be done is to impose the pressure explicitly. The 

resultant matrix equation becomes 
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[
 
 
 
 
[𝐻] −[𝐺]
[𝐶𝐴] [𝐶𝐵]

0 0
𝐵𝐶1 𝐵𝐶2

0 0
𝐵𝐶3 0

[𝐾]s − 𝜔2[𝑀]s −[𝐶̃]

−𝜔2[𝐶̃]
T

[𝐻] − 𝜔2[𝑄]]
 
 
 
 

{

𝑝a

𝑣n
𝑢p

𝑝p

} = {

0
𝐶𝐶

𝐹s

𝐹f

} (16) 

where 𝐵𝐶1 and 𝐵𝐶2 are the coupling terms in the boundary element formulation. Note that in the rows 

which represent the interface all components are zero except for those in the coupling equation. 

3.1.  Validation 

A comparison has been made to validate the developed BE-FE code for both external and internal 

problems. 

3.1.1.  Internal problem. A calculation has been carried out for a layer of glass wool at the end of a 

tube as shown in Figure 1. The glass wool has been set to have a high shear modulus to behave 

effectively as a rigid porous material, such that the result can be compared with the analytical solution. 

The full properties of the sample are given in Table 1. 

Table 1. Properties of glass wool [6] 

Property 
𝛼∞ 𝜌𝑠 𝜎 𝜙 N 𝜈 𝛬 𝛬′ 𝑙 

(kg/m3) (Ns/m4) (kPa) (μm) (μm) (cm) 

Value 1.06 130 40000 0.94 2200(1+j0.1) 0 56 110 10 

          

 
Figure 1. Rigid tube with glass wool at the end (not to scale) 

For a given maximum frequency, the number of elements 𝑛e is determined following the criteria 

below: 

6 × Δ𝑥a < 𝜆min → 𝑛ea >
6𝑓max

𝑐a
𝐿𝑥a (17) 

12 × Δ𝑥p < 𝜆min → 𝑛ep >
12𝑓max

𝑐p
𝐿𝑥p (18) 

where the subscripts ‘a’ and ‘p’ indicate ‘air’ and ‘porous’, respectively. In this case, 𝑓max = 500 Hz 

and 𝑛ea > 43.73, 𝑛ep > 8.78 with 𝑐a = 343 𝑚/𝑠, Re(𝑐p) = 68.37 𝑚/𝑠. 𝑛ea = 44 and 𝑛ep = 10 

have been used and the results are shown in Figure 2. The analytical solution has been obtained by 

considering the rigid porous material as an equivalent fluid layer to validate the numerical result. 

𝑥a 𝑥p 
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(a) 

 
(b) 

Figure 2. Input impedance with elements (𝑛ea, 𝑛ep) = (44,10): (a) Magnitude, (b) Phase 

The results show the magnitude and phase of the input impedance. The lines are obtained from the 

analytical solution and the dots are from the numerical simulation. It can be said that the 

recommended criteria give acceptable agreement. From this, it can be said that the BE-FE coupled 

code is reliable for internal problems. 

To see the effect of frame vibration, a comparison has been made between the rigid model and the 

elastic model in Figure 3. The two differ at around 470 Hz where the frame resonance occurs but 

otherwise are identical. 

 
(a) 
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(b) 

Figure 3. Comparison with the elastic model: (a) Magnitude, (b) Phase 

3.1.2.  External problem. For the case of an external problem, a sound radiation test of a 1:5 reduced 

scale rail above a layer of melamine foam has been chosen for which a numerical result and 

experimental data are available [15]. This is illustrated in Figure 4. In this case the rail is modelled by 

boundary elements and the foam is modelled by the poroelastic finite elements. As the properties of 

the foam are unknown, they had to be determined by either simulation or measurement. This process is 

described in Section 4.   

 
Figure 4. External problem: a 1:5 scale rail above a layer of melamine foam 

A unit vertical velocity is given around the rail and the ground is assumed to be rigid. The result is 

shown in Figure 5 in terms of the radiation ratio of the rail. The dashed black line is obtained from the 

2D boundary element method with a semi-analytical model for the porous material impedance, which 

includes the effect of thickness of the foam. The solid blue line is from the developed model, which 

agrees well with the black line. The difference between the two models is very small, as the frame of 

the foam is hardly excited by the acoustic radiation of the rail. The two lines show discrepancies at 

low and high frequencies against the measured data, but overall the graph shows good agreement with 

an acceptable deviation. 

 
Figure 5. Radiation ratio: a 1:5 scale rail above melamine foam 
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4.  Characterisation of porous materials 

As mentioned in the last section, the properties of the material need to be quantified to be put into the 

model. The properties can be divided into two types. One consists of properties which were introduced 

in the rigid model (“rigid properties”), and the other is properties from the elastic model (“elastic 

properties”). A range of methods have been developed either to measure or inversely characterise 

these properties. In this paper the rigid parameters have been found by inverse characterisation from 

measured impedance data. These are listed in Table 2. However, for the elastic parameters, a more 

accurate analysis is necessary as different combinations of elastic parameters can lead to the same 

result. This is illustrated in Figure 6 and Figure 7, for example. For the foam used previously, 

absorption coefficient data measured in an impedance tube has been used as a reference. The red lines 

in the two graphs indicate that two different parameter combinations show nearly the same result. The 

black line in the first graph shows the result from the rigid model, which cannot predict the effect of 

frame resonance around 900 Hz. 

 

Table 2. Rigid properties of the melamine foam 

Property 𝛼∞ 𝜙 𝜎 (Ns/m4) 𝛬 (μm) 𝛬′ (μm) 

Value 1.06 0.97 10000 150 200 

  
Figure 6. Comparison with the measured 

absorption coefficient from impedance tube 

measurement: 𝐸 = 300000 Pa, 𝜈 = 0.2 

Figure 7. Comparison with the measured 

absorption coefficient from impedance tube 

measurement: 𝐸 = 94000 Pa, 𝜈 = 0.45 

In this paper, a method by Langlois [16] has been used to determine the elastic parameters. It 

consists of a dynamic stiffness measurement and finite element simulations. From the measurement 

the dynamic stiffness and its loss factor can be obtained. On the other hand, a polynomial relation 

between the Young’s modulus and the Poisson’s ratio can be derived from the simulation. By 

combining those one could get a Young’s modulus as a function of Poisson’s ratio. Using a second 

sample with a different aspect ratio, another function is obtained. By plotting the two curves from the 

different samples, unique values of Young’s modulus and Poisson’s ratio can be obtained from their 

intersection. 

4.1.  Dynamic stiffness measurement 

For the sample foam used in the previous section, the dynamic stiffness has been measured. The 

measurement setup is depicted in Figure 8. It consists of a disk-shaped sample of porous material 

placed between two rigid plates. A large mass (31 kg) made of steel is located at the bottom to provide 

a blocked termination. An accelerometer is placed on the top plate and a force gauge between the 

lower plate and the mass. The sample is excited by a shaker, fixed on the holder, at angular frequency 

𝜔. The ratio between two measured values gives the dynamic stiffness of the sample, as: 
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𝑍m(𝜔) =
𝐹(𝜔)

𝑢(𝜔)
= 𝐾m(𝜔)(1 + 𝑗𝜂(𝜔)) (19) 

where 𝐹(𝜔) and 𝑢(𝜔) are the force transmitted to the mass and the displacement of the sample 

surface. This can also be expressed by using the dynamic stiffness with real part 𝐾m(𝜔) and loss 

factor 𝜂(𝜔). The measurement can be regarded as quasi-static if the excitation is well below the 

resonance frequency of the sample. Also, the strains applied to the sample should be less than 5% to 

ensure linearity in the sample [17]. Both conditions enable the sample to have in vacuo-like behaviour. 

                           
Figure 8. Setup for dynamic stiffness measurement 

4.2.  Finite element simulation 

The finite element analysis of the quasi-static measurement is needed to extract the relationship 

between the stiffness and the Poisson’s ratio. It can be done by varying the Poisson’s ratio for a given 

arbitrary Young’s modulus. In the finite element simulation the sample is modelled as a pure solid 

material. For a narrow sample Young’s modulus is related to the stiffness by 

𝐾0 =
𝐸𝐴

𝐿
 (20) 

where 𝐿 is the length, 𝐴 the area of the upper surface and 𝐾0 the compression stiffness which is 

assumed as an arbitrary value. From the simulation, an apparent Young’s modulus is obtained from 

𝐾m(0) =
𝐸′𝐴

𝐿
 (21) 

where 𝐾m is the computed compression stiffness from the FE analysis which depends on the shape of 

the sample and on the Poisson’s ratio. Dividing Equation (21) by Equation (20) yields the normalised 

ratio of the static compression stiffness. 
𝐸′

𝐸
=

𝐾m(0)

𝐾0
 (22) 

For a given aspect ratio, this ratio can be plotted as a function of Poisson’s ratio. This function can be 

approximated as a polynomial function of 𝜈, namely: 

𝑃s(𝜈) =
𝐾m(0)

𝐾0
= 1 + ∑𝐷𝑖

s𝜈𝑖

𝑁

𝑖=1

 (23) 

From the quasi-static approximation, 

𝐾m(𝜔) → 𝐾m(0) for 𝜔 ≪ 𝜔1 (24) 

where 𝜔1 is the first resonance frequency of the frame. If two different samples are used, the 

corresponding Young’s moduli can be calculated in both cases as a function of Poisson’s ratio and 

they should be the same since it is an intrinsic property. From Equation (22),  
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𝐸 =
𝐸′

𝐾m(0)/𝐾0
=

𝐸′

𝑃s(𝜈)
 (25) 

From Equations (21), (23) and (25), 

𝐸 =
𝐾m,s1(𝜔)𝐿s1

𝐴s1𝑃s1(𝜈)
 (26) 

𝐸 =
𝐾m,s2(𝜔)𝐿s2

𝐴s2𝑃s2(𝜈)
 (27) 

Combining Equations (26) and (27) yields 
𝐾m,s1(𝜔)𝐿s1

𝐴s1𝑃s1(𝜈)
=

𝐾m,s2(𝜔)𝐿s2

𝐴s2𝑃s2(𝜈)
 (28) 

By applying the quasi-static condition, Equation (28) becomes purely an equation in Poisson’s ratio. 

Solving this polynomial equation gives a unique solution for Poisson’s ratio. Once this is done, the 

Young’s modulus can also be determined. 

4.3.  Elastic parameters of the melamine foam 

Two samples of foam of the same diameter but with different thickness have been used as shown in 

Figure 9. The diameter is 100 mm in each case, and the thicknesses are 52 mm and 18 mm, 

respectively. The results from the measurement are shown in Figure 10. The values in the graphs are 

within a certain range so as a first attempt the range has been used to include this uncertainty. It should 

be noted that the condition of the sample surface is critical to the result, so it should be clean and well 

attached to the both plates otherwise the upper plate can vibrate on the sample surface. Also, the 

resonance peaks in the measurement are thought to be due to the test-rig frame. 

  

(a) (b) 

Figure 9. Samples: (a) Thick, (b) Thin 

  

(a) (b) 

Figure 10. Measured dynamic stiffness: (a) Thick, (b) Thin 
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The finite element simulation for each sample has been done by using a commercial software 

ABAQUS. A Young’s modulus curve has been obtained from this and represented by a polynomial. 

This is illustrated in Figure 11. 

  
(a) (b) 

Figure 11. Simulation results: (a) Thick, (b) Thin 

The polynomial relation obtained by regression for each sample is 

𝑃s1(𝜈) = 134.2ν6 − 153.2ν5 + 70.82ν4 − 14.24ν3 + 2.348ν2 − 0.0447ν + 1 (29) 

𝑃s2(𝜈) = 1784ν6 − 1904ν5 + 789.8ν4 − 148.7ν3 + 14.51ν2 − 0.3785ν + 1 (30) 

Combining the results with Equations (26) and (27), taking 𝐾m as the input, the Young’s modulus 

curves can be obtained. The result is also given as a range, as shown in Figure 12. From the two 

ranges, a set of possible solutions can be obtained. To see the variance of the solution, a comparison 

has been made with the measured absorption coefficient in Figure 6. The values in Table 3 have been 

used to provide a set of possible results, as shown in Figure 13. 

 

Table 3. (𝐸, 𝜈) for the selected 

points 

 𝐸(kPa) 𝜈 

P1 143.5 0.377 

P2 137.0 0.412 

P3 104.5 0.438 

P4 101.0 0.458 

P5 122.0 0.425 

P6 110.0 0.441 
 

Figure 12. Young’s modulus curves: red lines-thick sample, blue 

lines-thin sample. The solution exists in the shaded region. 
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Figure 13. Comparison of absorption coefficient with the measured data 

The two points at both ends, P1 and P4, show the limits of the result. The other points which are 

located in the middle, show nearly an identical result, with the dip at 820 Hz. Overall, it can be said 

that the median values give acceptable results. From the result the elastic properties of the foam are 

obtained, as shown in Table 4. Note that the loss factor 𝜂 has been obtained from the imaginary part of 

the measured stiffness. 

Table 4. Elastic properties of the melamine foam 

Property 𝐸 (kPa) 𝜂 𝜈 

Value 122 ± 15 ≤ 0.1 0.425 ± 0.013 

5.  Conclusions 

A 2D numerical modelling of porous material including its elasticity has been implemented and 

coupled to the acoustic boundary element method. It has been validated for internal and external 

problems. It has been shown that the elasticity has an effect on the absorption at the frame resonance 

frequencies. From the external case it has been noted that simple models could work for cases where 

the rail vibration hardly affects the absorptive treatment. A simple way consisting of a dynamic 

stiffness measurement and a finite element simulation has been used to determine the properties of 

porous materials. From the measurement it has been noted that the condition of the sample surface is 

important in order to attach the sample to the holding structure. The measured stiffness has been 

determined within a range. The use of median value gave an acceptable agreement with the measured 

data. 
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