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Abstract. An increasing number of MEMS devices use parametric excitation (PE) to
outperform conventional designs. These systems are operated at parametric resonance. Different
to standard cases of resonance, at parametric resonances the vibration’s amplitudes increase
faster and within a smaller interval. The amplification is much larger and only limited by
non-linearities. So far the focus has mostly been on one degree of freedom (1DOF) systems.
This is partly caused by a lack of methods to investigate and design multi degree of freedom
(MDOF) systems time-efficiently. Restricting the systems to 1DOF ignores the opportunity to
make use of PE effects only available in MDOF systems: parametric combination resonances
and parametric anti-resonances, where an enhanced damping behaviour can be observed. The
paper demonstrates how to approximate non-linear MDOF PE systems with 1DOF models.
This leads to a generalised, dimensionless model applicable to many systems. Approaches are
presented for investigating such a reduced non-linear 1DOF PE model analytically and semi-
analytically at parametric resonances using averaging methods. For a 2DOF system the results
are validated numerically by continuation methods and time simulations. Limits of both the
analytical and the semi-analytical approaches are discussed.

1. Introduction

In contrast to external excitation, such as force excitation or base excitation for example,
parametric excitation (PE) means that parameters of the system vary over time. If this variation
is time-periodical and its angular frequency ΩPE is

ΩPR,i,n =
2ωi

n
, ∀ n ∈ N (1)

the rest position’s steady state is destabilised. This effect is called parametric resonance (PR).
Here ωi is a natural angular frequency of the system. Considering multi degree of freedom
(MDOF) systems also parametric combination resonances (PCRs) exist for PE frequencies of

ΩPCR,ij,n =
ωi + ωj

n
, ∀ n ∈ N, (2)

where ωi and ωj both are natural angular frequencies of the system. In addition, for MDOF
systems it is possible not only to destabilise the rest position but also to enhance the energy
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dissipation and therefore bring the system to rest faster from a perturbed state at certain PE
frequencies

ΩPAR,ij,n =
|ωi − ωj|

n
, ∀ n ∈ N. (3)

This effect was first discovered by Tondl [1] and is called parametric anti-resonance (PAR).
The phenomenon is caused by periodically shifting energy between the modes i and j. Thus the
higher modal damping of the higher mode is exploited more effectively [2].

Compared to conventional resonance cases the instability intervals at PRs and PCRs are
much more narrow. The change from the unstable rest position to a stable bifurcated limit cycle
is instant in the frequency domain. The amplitudes of these limit cycles are only limited by
non-linearities. The vibrations’ amplitudes increase exponentially over time instead of linearly
over time as for conventional resonance cases. For many applications PE holds possibilities to
outperform conventional systems (see [3, 4, 5] for exaple). However, such systems are complicated
to investigate analytically: the governing equations do not only have time varying terms, but
also have to contain terms non-linearly depending on state variables. Without them amplitudes
would increase indefinitely at PRs. Yet, analytical investigations are essential to understand
the effects of the system parameters. Numerical investigations only yield specific results for the
corresponding system which do not lead to a general understanding of the behaviour at PR.
Hence, so far most applications are limited to 1DOF which leaves advantageous effects of PCRs
and PARs unexploited.

In section 2 first a MDOF non-linear PE system is modelled in section 2.1 and then reduced to
a 1DOF model in section 2.2. Its governing equations’ solutions are approximated analytically
and semi-analytically in section 2.3. These results are validated with results by numerical
continuation in section 3.2. Section 4 summarises the findings and points out the practical
value.

The parameter values (see table A1) of the system presented clearly refer to a micro system. In
fact, the research leading to the results expounded here was motivated by microelectromechanical
systems (MEMSs) for energy harvesting, weighing micro masses and filtering electric signals
[3, 6, 7, 8]. Yet, this work targets non-linear MDOF PE systems in general and is not limited to
certain applications. To the contrary, the results help to understand and to design any system
which is operated at PR.

2. Investigating MDOF non-linear PE systems analytically

In this section a MDOF system is investigated analytically and semi-analytically at PR by first
approximating it by a 1DOF model and then estimating the model’s behaviour at PR using an
averaging method.

2.1. Modelling MDOF non-linear PE systems

Multiple rigid bodies having masses mi are coupled to each other via springs with non-linear
stiffness parameters kij(xij) and viscoelastic dampers with damping constants cij (see figure 1).
The system undergoes PE by the time-periodic stiffness constants ki(xi, t).

The stiffness parameters are

kij(xi, xj) = kij,lin + kij,nlin(xi − xj)
2, (4a)

ki(xi, t) = kPE,i(xi)(1 + cos(ΩPEt)), (4b)

kPE,i(xi) = kPE,i,lin + kPE,i,nlinx
2
i . (4c)

Hence the equations of motion become

Mẍ+Cẋ+K(x)x+KPE(x) cos(ΩPEt)x = 0, (5)
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Figure 1. MDOF lumped mass model. The system is parametrically excited by springs with
time-periodic stiffness constants ki(xi, t).

where the abbreviation ˙( ) = d
dt denotes a time derivative. The mass matrix M and the

PE matrix KPE(x) are diagonal. The stiffness matrix K(x) and the damping matrix C

are fully occupied. Assuming the system to be proportionally damped, the damping matrix
C = αM + βKlin is a superposition of the mass matrix M and the linear part Klin of the
stiffness matrix K(x).

Having defined ki(xi, t) as stated in equation 4b makes the stiffness matrix K(x) depend on
the PE stiffness constants kPE,i,lin and kPE,i,nlin. This means the values of the linear PE stiffness
constants kPE,i,lin influence the system’s natural frequencies. In contrast, the values of the linear
PE stiffness constants kPE,i,nlin influence the system’s qualitative behaviour at PRs (as shown
in section 2.4). This most general approach is chosen to govern a larger number of PE systems.
However, for many systems the PE can be modelled using ki(xi, t) = kPE,i(xi) cos(ΩPEt).
Hence the system’s natural frequencies and the system’s qualitative behaviour at PRs become
independent of the intensity of the PE.

2.2. Quasi-modal reduction

Setting KPE = 0 in equation 5 describes the autonomous behaviour of the system. Solving
the eigenvalue problem for such modified equation 5 the system’s natural undamped angular
frequencies ωi and the corresponding modes ϕi are calculated. These modes can be normalised
such that

ϕT
i Mϕi = 1 (6)

and combined in the modal matrix φ = [ϕ1 ϕ2 ... ϕn].
Thus the displacement vector x can be transformed into the quasi-modal displacements z

by x = x∗φz. Here, x∗ is a scaling parameter which is employed for having dimensionless
quasi-modal displacements z as well as to provide a sufficient scaling for evaluating the
differential equations numerically. The expression quasi-modal is used because z are the modal
displacements for an autonomous set of differential equations. For a linear, time-invariant system
these modal displacements are the amplitudes of the natural modes and the natural frequencies
ωi are the undamped vibration frequencies of the natural modes. In addition, for such a linear,
time-invariant system the differential equations are decoupled.

For KPE 6= 0 equation 5 cannot be decoupled. Yet, for a PE system the quasi-modal
displacements zi describe the vibration at PR regarding each mode. For simplification a
normalisation is introduced regarding the eigentime τ = ΩPEt and the dimensionless PE
frequency Ω = ΩPE

Ω∗
where Ω∗ is some reference frequency. Applying the above transformation

leads to
z′′ + Zz′ +Λz+Λnlin(z)z +E(z) cos(τ)z = 0. (7)
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Here Λ is the normalised modal matrix with the elements
ω2

i

Ω2 along its diagonal. The normalised
modal damping matrix Z also is of diagonal shape and contains the elements 2ζi

ωi

Ω . Due to the
assumption of proportional damping the modal damping can be calculated by

ζi =
α

2ωi
+
βωi

2
. (8)

Both matrices Λnlin(z) and E(z) are fully occupied and their elements are quadratic and bilinear
functions of z.

As stated above the quasi-modal transformation means that each equation of the matrix
equation 7 describes the vibration of one mode. At PR mainly the mode i is excited which
corresponds to the PR frequency ΩPR,n = 2ωi

n . Likewise, for PCRs with the centre frequency

ΩPCR,n =
ωi+ωj

n both modes i and j are excited (see [9, 10] for example). With this knowledge,
equation 7 can be approximated for PRs. The predominantly excited mode i has an amplitude
much larger than all other modes which allows the quadratic and bilinear terms in Λnlin(z)
and E(z) to be set to zero except for terms containing z2i . This reduces the multi-dimensional
problem of equation 7 to a scalar one, i.e.

z′′i + 2ζi
ωi

Ω
z′i +

(

ω2
i

Ω2
+
ǫi,lin

Ω2
cos(τ)

)

zi +

(

κ2i
Ω2

+
ǫi,nlin

Ω2
cos(τ)

)

z3i = 0, (9)

where the linear and non-linear PE parameters ǫi,lin/nlin determine the PE amplitude and the

non-linearity parameter κ2i condenses normalised non-linear stiffness parameters. However, such
an approximation is only valid at the corresponding PR. The n-DOF system is approximated by
n 1DOF systems—one for each mode. The n bodies of the MDOF system undergo vibrations
which can be estimated by

xk =

n
∑

l=1

ϕlkzl ≈ ϕikzi (10)

for the kth body. Here i indicates the quasi-mode ϕi and ϕik is its kth element.

2.3. Averaging the non-linear 1DOF model’s equation of motion

Employing the Krylov-Bogolyubov method (see [11] for example) equation 9 can be averaged
over one period 2π

η of zi(τ). Here the frequency ratio is η = ωi

Ω0
and Ω0 is the centre frequency

of the PR. For each mode’s first PR (n = 1 ⇒ max(ΩPR,n)) this frequency ratio takes the value
η = 1

2 . The deviation of the normalised PE angular frequency from Ω0 is assumed to be very
small, i.e.

Ω = Ω0 +∆Ω+O(∆Ω2), O(∆Ω2) ≪ ∆Ω. (11)

Introducing the amplitude ri and the phase shift ψi for the quasi-modal displacement zi
equation 9 can be averaged for η = 1

2 to

r′i = r̄′i =
−4ω2

i ζi + ǫi,lin sin(2ψ̄i)

8ω2
i

r̄i +
ǫi,nlin sin(2ψ̄i)

16ω2
i

r̄3i , (12a)

ψ′

i = ψ̄′

i =
−3

2
κ2

i

ωi
∆Ω r̄2i − 2 ∆Ω ωi +

3
2κ

2
i r̄

2
i + ǫi,lin cos(2ψ̄i) + cos(2ψ̄i)r̄

2
i ǫi,nlin

8ω2
i

. (12b)

For a limit cycle the averaged changes (̄ )
′

of both ri and ψi have to be zero over one period of
the vibration. Neglecting any damping (ζi = 0), the solutions are [3, 8]1:

1 Equations 13b-d are similar to equations 16-19 and 22&23 in [8]. However, a different normalisation with
different parameters is chosen in [8].
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r̄a = 0 ∧ ψ̄a =
arccos

(

2ωi

ǫi,lin
∆Ω

)

2
, (13a)

∧ r̄b = ±

√

4ωi∆Ω+ 2ǫi,lin

−2ǫi,nlin + 3κ2i (1−
∆Ω
ωi

)
∧ ψ̄b =

π

2
(1 + 2k), k ∈ N, (13b)

∧ r̄c = ±

√

4ωi∆Ω− 2ǫi,lin

2ǫi,nlin + 3κ2i (1−
∆Ω
ωi

)
∧ ψ̄c = πk, k ∈ N, (13c)

∧ r̄d = ±

√

−2ǫi,lin
ǫi,nlin

∧ ψ̄d =
arccos

(

3κ2

i

ǫi,nlin
(∆Ω
ωi

− 1)− 2ωi

ǫi,lin
∆Ω

)

2
. (13d)

2.4. Bifurcation analysis

Each pair of amplitudes in equation 13b-d represents the same physical response. The period
of zi(τ) is T = 4π and hence r̄b/c/d+(τ) = r̄b/c/d−(τ + 2π). The limit cycles (equations 13b&c)
bifurcate from the trivial steady state equation 13a at the bifurcation points

∆Ω = ∓∆Ωb,1 = ∓
ǫi,lin

2ωi
. (14)

Equation 13a, describing the system’s rest position, is unstable in between these points, if
ζi < 2ǫi,lin. In this case the trivial steady state is unstable/stable according to whether the
bifurcated limit cycle is stable/unstable. Also, the eigenvalues of the Jacobian evaluated at the
branch point are λ = 0 with multiplicity 2. The bifurcations thus have the characteristic of
saddle-node bifurcations with the unstable state as the repelling saddle and the stable one as
the attracting node (see [12] for example).

The stability of the limit cycles equations 13b,c at the bifurcation points depend on whether
they have hardening or softening amplitude characteristics r̄b or r̄c, respectively. The hardening
or softening behaviour is determined by the non-linearity parameter κ2i as shown in figure A1.

The stability of the bifurcated limit cycles equations 13b,c changes at

∆Ωb,2 =
ωiǫi,linǫi,nlin − 3κ2i ωiǫi,lin

2ω2
i ǫi,nlin − 3κ2i ǫi,lin

, ∆Ωb,3 =
−ωiǫi,linǫi,nlin − 3κ2i ωiǫi,lin

2ω2
i ǫi,nlin − 3κ2i ǫi,lin

(15)

where both are connected via the unstable limit cycle equation 13d (see figure A1).
As mentioned in section 2.1 the stiffness constants kPE,i,lin have an effect on the natural

frequencies which drift, if the PE is not kept at a constant level. Furthermore, such transient
PE behaviour also affects κ2. This can cause changes in the system’s qualitative behaviour when
varying the level of the PE.

3. Semi-analytical and numerical validation

For a numerical validation parameters are introduced for a 2DOF system according to figure 1.
Physical and quasi-modally transformed parameters are stated in table A1 and table A2 in
the appendix. For approximating the limit cycles of equations 9 damping was neglected. To
investigate this effect on the analytical solutions (equations 13), equations 12 are evaluated
numerically in section 3.1. For validating the accuracy of both steps of the approximation, which
are the approximation of the 2DOF system with 1DOF models and the averaging method, the
original equations 7 are assessed numerically in section 3.2. These numerical results then are
compared to the analytical results of sections 2.3 and 3.1.

MOVIC2016 & RASD2016 IOP Publishing
Journal of Physics: Conference Series 744 (2016) 012126 doi:10.1088/1742-6596/744/1/012126

5



00.10.20.30.40.5 0
1

2
3

0

75

150

ζ2 = 0

ζ2 = ζ0

ζ2 = 2ζ0

ζ2 = 0

ζ2 = 0.1ζ0

ζ2 = 2ζ0

r 2

ψ2∆Ω

Figure 2. Reduced parameter-phase-space ∆Ω-ψ1-r1: Analytical (no damping: ζ1 = 0) and
semi-analytical (for different damping ratios ζ1) solutions of equations 12 at the first PR for
parameters in table A2. The value ζ0 denotes a damping ratio as stated in table A2. Bold:
stable states, thin: unstable states.

3.1. Numerical evaluation of the averaged equations

Equations 12 are set equal to zero leaving an algebraic set of equations. These equations are
solved numerically employing the homotopy method. The results for parameters as stated in
table A2 and different values of ζ are compared to the analytical results equations 13 (see figure
2). Including damping connects the limit cycles equations 13b-d to two loops. Reducing the
amount of damping being present, the amplitudes and phase shifts of the limit cycles approach
equations 13b-d asymptotically. Since this approach solves the analytically averaged equations
numerically, it is referred to as semi-analytical approach in the following.
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Figure 3. Numerical continuation, first quasi-modal displacement z1, first PR (Ω0 = 2ω1).
Original 2DOF model (line) and reduced 1DOF model (circles). The boxes zoom in on the
turning points of the loops where the difference between the results is at a maximum.
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Figure 4. Numerical continuation, second quasi-modal displacement z2, second PR (Ω0 = 2ω2).
Original 2DOF model (line) and reduced 1DOF model (circles). The box zooms in on the turning
point of the loop where the difference between the results is at a maximum.

3.2. Numerical validation of the analytical approximation

For the numerical continuation the MATLAB package MATCONT [13] is employed. First the
accuracy of the quasi-modal reduction is tested. Comparing continuation results for the original
equations 7 and the quasi-modally to 1DOF reduced equation 9, very close agreement can be
observed at both PRs (see figure 3 and 4). This proves that, at least for the parameter set in
table A1, the quasi-modal reduction holds a very good approximation for the behaviour at PR.
However, at the second PR the phase shift ψ2 is slightly overestimated close to the turning point
of the loop on the left hand side and slightly underestimated close to the turning point of the
loop on the right hand side.

Indeed, the analytical estimate of the limit cycles (equations 13) uses two more
approximations: first averaging over one period of the limit cycle and second neglecting
any damping. Yet, comparing the continuation results of the original equations 7 with the
continuation of the quasi-modally reduced and averaged equations 12 and the approximations
(equations 13) show very close agreement within both PR intervals. Within the instability
interval of the rest position (∆Ω0 = ∓0.0387 and ∆Ω0 = ∓0.0396, respectively) the three
different approaches lead to almost identical results. For larger values of ∆Ω the results differ
more from each other (see figures 5 and 6). For the first PR this inaccuracy does not result from
approximating the 2DOF system with an 1DOF model as shown earlier (see figure 3), but solely
because the influence of higher order terms was neglected in the analytical and semi-analytical
approach. Hence the non-linear softening behaviour is underestimated for large magnitudes of
z1. For the the second PR (Ω0 = 2ω2) the difference between the approaches is partly caused by
neglecting higher order terms for the approximation. But in addition, approximating the 2DOF
system with an 1DOF model causes some inaccuracies (see figure 4). Thus, the estimation of
the amplitudes and phase shifts of the limit cycles is better at the first PR.
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Figure 5. Limit cycles of equation 9 for the first quasi-modal displacement z1(t) at the first PR
(Ω0 = 2ω1). Thin: analytical approximation, bold and dashed: semi-analytical approximation,
bold and solid: numerical solution.
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Figure 6. Limit cycles of equation 9 for the second quasi-modal displacement z2(t) at the
second PR (Ω0 = 2ω1). Thin: analytical approximation, bold and dashed: semi-analytical
approximation, bold and solid: numerical solution.

4. Conclusion

Investigating MDOF non-linear PE systems analytically is no straightforward process and
certainly requires some basic understanding of effects of PE. But quasi-modally transforming
the model enables one to concentrate on the important mode at a certain PR. For this mode the
model can be reduced to 1DOF by a numerical transformation. The behaviour of this 1DOF non-
linear PE model can be approximated via an averaging according to Krylov-Bugolyubov. Five
different regimes of the non-linearity parameter can be identified leading to different qualitative
behaviours. With this knowledge MDOF PE systems can be designed and tuned very easily and
very time-efficiently with little computational effort. For the presented example the accuracy of
the analytical approximation is excellent within the PRs and reasonable good (less than 10%
error) for nearby frequencies within a interval up to five times the bandwidth of the PR.
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Appendix
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Figure A1. The hardening/softening behaviour as well as the stability of the bifurcating
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Table A1. Physical parameters of the 2DOF system introduced in section 3.

Parameter Symbol Value Unit

Mass m1 1.22 · 10−10 kg
m2 2.44 · 10−10 kg

Damping c01 1.94 · 10−8 Nm−1 s
c12 0.97 · 10−8 Nm−1 s
c12 1.94 · 10−8 Nm−1 s

Linear Stiffness k01,lin 3.505 Nm−1

k12,lin 1.753 Nm−1

k02,lin 3.505 Nm−1

Non-linear Stiffness k01,nlin 18 · 109 Nm−3

k12,nlin 9 · 109 Nm−3

k02,nlin 18 · 109 Nm−3

Linear PE Stiffness kPE,1,lin 0.2281 Nm−1

kPE,2,lin 0.2281 Nm−1

Non-linear PE Stiffness kPE,1,nlin −1.056 · 1010 Nm−3

kPE,2,nlin −1.056 · 1010 Nm−3

Table A2. Quasi-modally transformed, dimensionless parameters of the 2DOF system
introduced in section 3 for modelling the system with the 1DOF model equation 9.

Non-dimensional Parameter Symbol Value

Natural Angular Frequencies ω1 1.3628
ω2 2.2109

Eigenmodes ϕ1

(

3.2524
5.9745

)

104

ϕ2

(

8.4492
−2.2998

)

104

Modal Damping Ratios ζ1 3.7715 · 10−4

ζ2 6.1187 · 10−4

Non-linearity Parameters κ21 1.0806 · 10−5

κ22 15.827 · 10−5

Linear PE Parameters ǫ1,lin 0.10555
ǫ2,lin 0.17490

Non-linear PE Parameters ǫ1,nlin −1.4636 · 10−5

ǫ2,nlin −5.4113 · 10−5

Scaling Parameter Symbol Value

Frequency Scaling Parameter Ω∗ 105 s−1

Displacement Scaling Parameter x∗ 10−6 m
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[2] Ecker H and Pumhössl T 2012 Vibration suppression and energy transfer by parametric excitation in drive

systems Proc. IMechE Part C: J. Mech. Eng. Sc. 226(8) 2000–14
[3] Kniffka T J and Ecker H 2015 Parametrically excited microelectromechanical systems (MEMS) e & i

Elektrotechnik und Informationstechnik 132(8) 456–61
[4] Welte J, Kniffka T J and Ecker H 2013 Parametric excitation in a two degree of freedom MEMS system Shock

and Vibration 20 1113–24
[5] Dohnal F and Mace B R 2008 Amplification of damping of a cantilever beam by parametric excitation Proc.

MOVIC 2008 (Southampton: Univ. of Southampton, Inst. of Applied Mechanics) 1248
[6] Jia Y, Yan J, Soga K and Seshia A A 2013 Parametrically excited MEMS vibration energy harvester with

design approaches to overcome the initiation threshold amplitude J. Micromech. Microeng. 23 114007
[7] Zhang W, Baskaran R and Turner K L 2002 Effect of cubic nonlinearity on autoparametrically amplified

resonant MEMS mass sensor Sensors and Actuators A 102 139–50
[8] Rhoads J F, Shaw S W, Turner K L, Moehlis J, DeMartini B E and Zhang W 2006 Generalized parametric

resonance in electrostatically actuated microelectromechanical oscillators J. Sound Vib. 296 797–829
[9] Kniffka T J, Welte J and Ecker H 2012 Stability analysis of a time-periodic 2-dof MEMS structure AIP Conf.

Proc. 1493 559–66
[10] Kniffka T J and Ecker H 2013 Observations regarding numerical results obtained by the Floquet-method

Proc. ASME IDETC/CIE (Portland: ASME) DETC2013/MSNDC-13292
[11] Krylov N M and Bogolyubov N N 1947 Introduction to non-linear mechanics (Princeton: Princeton Univ.

Press)
[12] Kuznetsov Y A 1998 Elements of applied bifurcation theory 2nd edition (New York: Springer)
[13] Govaerts W, Kutznetsov Y A and Dhooge A 2005 Numerical continuation of bifurcations of limit cycles in

MATLAB SIAM J. Sci. Comput. 27(1) 231–52

MOVIC2016 & RASD2016 IOP Publishing
Journal of Physics: Conference Series 744 (2016) 012126 doi:10.1088/1742-6596/744/1/012126

11


