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Abstract. The paper presents an asymptotic stabilization strategy for the deployment of a 
controlled tethered satellite system in three-dimensional space, in which the tether length rate 
is taken as the control variable. Firstly, a rigid-rod tether model is employed to establish the 
nonlinear dynamic equations of in-plane and out-of-plane motions of the system. Then, by 
stability analysis of the linearized system at a preassigned direction to deploy, the control law 
and asymptotic stability condition for the deployment are obtained. The electrodynamic 
tethered satellite in equatorial plane is discussed. As a result, the large swing motions during 
deployment are stabilized asymptotically through reliance on the electrodynamic force and the 
tether length rate. The case studies in the paper well demonstrate the proposed stabilization 
control strategy. 

1. Introduction 
The inherent Coriolis effect of tethered satellite systems makes their deployment/ retrieval unstable 
[1]. And, during state-keeping phase, there have always been unstable periodic motions in the 
electrodynamic tethered satellite system [2-4]. 
A large number of intensive studies have been made for the deployment/retrieval process of tethered 
satellite systems. For example, Barkow et al [5] investigated the deployment of a tethered satellite 
system in a circular orbit by using the optimal control with the free- and force-braked deployment and 
the Kissel’s law, respectively. Jin and Hu [6] studied the deployment and the retrieval of a tethered 
sub-satellite of three degrees of freedom via nonlinear optimal control. Based on a 3-D model, Mantri 
et al [7] identified five dimensional parameters that affect the percentage of the total length to which 
the tethered satellite system to be deployed, including initial separation velocity, tether tension force, 
orbital height, effective mass, and final desired tether length. Kumar and Patel [8] developed control 
laws for multi-connected satellites aligned along local horizontal configuration. Liu et al [9] designed 
a variable structure control for the deployment/retrieval of tethered satellite system. 
With electrodynamic tethered satellite systems, Wen et al [10,11] presented two nonlinear optimal 
control schemes for the retrieval of a tethered satellite system in inclined orbit by adjusting 
electrodynamic force and tether tension. Williams [12] designed a time-delayed predictive control law 
for the librations of electrodynamic tether. Kojima et al [13] showed that a 4-periodic motion was 
successfully synchronized among electrodynamic tether systems. Zhong and Zhu [14] achieved an 
optimal balance between a fast deorbit and a libration stability of a short electrodynamic tethered 
nano-satellite with the minimum control efforts. Iki et al [15] represented an electrodynamic tether 
deployment from a spool-type reel using thrusters, in which key parameters are estimated on the 
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ground-based experiments. Based on the time-delayed auto-synchronization, Iñarrea et al [16] applied 
two feedback control methods in suppressing the unstable periodic motions of an electrodynamic 
tether. 
Most of the published works are devoted to control of the unstable periodic motions caused by 
electrodynamic forces during state-keeping phase, and have paid less attention to the use of 
electrodynamic forces in the deployment process of tethered satellite systems. This paper utilizes the 
tether length rate to stabilize the deployment of tethered satellite systems with three dimensional 
attitude motion. In Section 2, the study here, begins with establishing a rigid rod model of a tethered 
satellite system in three-dimensional space, and then in Section 3, based on Lyapunov stability theory, 
gives the deployment control law and stability condition. The deployment process of electrodynamic 
tethered satellite in equatorial plane is discussed. Finally, in Section 4, case studies are carried out 
numerically. 

2. Mechanics model 
A tethered satellite in inclined circular orbit is shown in figure 1. The system consists of a mother 
satellite M of mass Mm  and a sub-satellite S of mass Sm . The two satellites are connected by a tether 
of deployed length l  that is viewed as a massless rigid rod. An inertial geocentric frame O-XYZ is 
established such that the X-axis points the direction of ascending node from the center of the Earth O, 
the Z-axis is aligned with the Earth’s axis, and the Y-axis is determined by right-hand rule. An orbital 
frame o-xyz is on the center of mass of the system, where the y-axis points the direction of motion, the 
z-axis is perpendicular to the orbital plane, and the x-axis is given by right-hand rule. In figure 1, δ 
represents the angle of inclination between the orbital plane and the equatorial plane. The in-plane 
pitch angle θ  and out-of-plane roll angle φ  are selected as the generalized coordinates, respectively. 

 
Figure 1. The simplified representation of tethered satellite system. 

Application of Lagrange’s equations leads to the following dynamic equations of the system [17] 
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where () d d′ = t  represents the derivative with respect to time t, ν  the orbit true anomaly, µE  the 
Earth’s gravitational constant, R  the radius of the running orbit, the non-dimensional parameter 

MOVIC2016 & RASD2016 IOP Publishing
Journal of Physics: Conference Series 744 (2016) 012119 doi:10.1088/1742-6596/744/1/012119

2



 
 
 
 
 
 

( )= + M S M Sm m m m m , θQ  and φQ  the generalized forces in the pitch and roll generalized coordinates. 
If they are produced by electrodynamic forces, one can get the following form 
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where I  is the current in tether. It is set as positive if the current flows to the sub-satellite from the 
mother satellite. Based on a non-tilted dipole model, the Earth magnetic field established in the orbital 
frame o-xyz can be expressed as 
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and µm  is the magnetic moment of the Earth’s dipole. Using the non-dimensional transformations 
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the original dynamic equations of the system become 
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in which the dot represents the derivative with respect to ν , ξ  denotes non-dimensional tether length, 

maxl  the maximum value of the deployed tether length, 3ω µ= E R  orbit angular velocity around the 
Earth. The simplified non-dimensional form of equation (6) is 
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where 
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Note that, θH  would vary with the current I  only, say, 
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and 
 0φ =H  (11) 
if the system moves in an equatorial plane. Here, other parameters of the system keep unchanged. It is 
the motivation for utilizing the electrodynamic force to control the deployment. 
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3. Stabilization strategy 
Clearly, the electrodynamic tethered satellite is a nonautonomous system. Therefore, Lyapunov 
stability theory is not suitable to the electrodynamic tethered satellite system. However, when the 
system moves in an equatorial plane, the expression of θH  and φH  can be rewritten as equation (10) 
and (11). Now, the electrodynamic tethered satellite system is an autonomous one. The linearization of 
equation (7) gives [2] 
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By setting 1ϕ θ= , 2ϕ θ=  , 3ϕ φ= , and 4ϕ φ=  , equation (12) can be recast as a set of state equations 
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It is easy to get the equilibrium positions 
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It is evident that the equilibrium position of out-of-plane roll angle always equals to 0. On the other 
hand, for a deployment with a specified direction, say, 10ϕ θ= e , we have 
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According to the tether length rate, the specified direction would be maintained over the deployment 
process. Next, let’s analyze the stability of the system at the specified direction. The Jacobian matrix 
of equation (13) is 
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After Substituting equation (14) of equilibrium positions into equation (16), four eigenvalues of which 
are 
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Obviously, if 
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the system becomes asymptotically stable on the basis of Lyapunov stability theory. Substitution of 
equation (15) into equation (18) gives 

 
3
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The same result can be obtained by substituting equation (15) into the deployment condition, i.e., 
0ξ > . Note that, if 0θ =H  for 0=I , the magnitude of θe  must be less than zero. With the help of the 

electrodynamic force, hence, the linearized system in an equatorial plane of equation (12) can be 
deployed along a specified direction for 0θ <e  or 0θ >e . 
In addition, the uniform deployment with an expected tether length rate ξe  can also be achieved 
through the following form 

 2 [2 3 ]( )
( )

µ ξ ξθ
ξ

µ
+

= −
−


E M S e e

m M S

m mI
m m

 (20) 

which is obtained by substituting equation (10) into equation (15). It is easy to find that tether 
deployment rate of equation (15) always satisfies equation (19) even if current I change continuously. 

4. Case studies 
In order to verify the stabilization strategies, a set of parameters was taken as follows. The masses of 
mother satellite and sub-satellite were 500kg=Mm  and 20kg=Sm , respectively. The system moved 
in an equatorial plane. The current strength was taken as 1A= −I . The initial true anomaly 0 0ν = . 
The initial non-dimensional tether length was set as 0 0.05ξ = . The initial in-plane pitch angle and its 
angle velocity were 0 0.02radθ = −  and 0 0.05rad sθ = , respectively. The initial out-of-plane roll angle 
and its angle velocity were 0 0.1radφ = −  and 0 0.05rad sφ = , respectively. Based on above the initial 
system parameters and Runge-Kutta integration method, the following numerical simulation is carried 
out by the Matlab software. 
According to equation (19), the expected pitch angle reads 0.16radθ <e  such that 0.05radθ =e . In 
term of the tether length rate in equation (15), the stable deployment can be achieved within 18radν = , 
as shown in figure 2. From figure 2(a) and 2(b), the time histories of the pitch and roll motions in true 
anomaly, one can see that the amplitudes of the motions decrease gradually within 18radν = , and 
approach to 0.05radθ =  and 0φ =  in the end. figure 2(c) shows the trajectory of the sub-satellite 
during deployment in a non-dimensional orbital plane frame χη−o , where the χ -axis points the 
opposite direction of motion, η -axis points the direction of the mass center of the system from the 
center of the Earth O. The non-dimensional tether length versus the true anomaly is depictured in 
figure 2(d). 
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Figure 2. Stabilization strategy with constant current. 
Next, setting the expected pitch angle 0.05radθ =e , an uniform deployment at 0.01ξ =e  is shown in 
figure 3. Based on the current change in equation (20), the duration of the deployment for 0.95ξ =  
lasted for 95radν = , wherein the absolute value of the current in tether decreases gradually from 

1.15A−  to 0.35A−  with the increase of the true anomaly. 
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Figure 3. Stable deployment with constant deployment rate. 

5. Conclusions 
In three-dimensional space, the asymptotic stabilization of deployment of a tethered satellite system 
along a preassigned direction can be achieved via tether length rates. In equatorial plane, the tether can 
be deployed along the desired pitch angle through reliance on electrodynamic forces in conjunction 
with tether length rates. In this situation, the deployment control with a constant tether length rate can 
also be performed by electrodynamic forces. Next, the proposed method would be extended to 
elliptical orbits in which tethered satellite systems can be also asymptotically stable deployed. 
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