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Abstract. This paper studies the chaotic motions of a tethered satellite system by utilizing a 

ground-based experimental system. Based on dynamics similarity principle, a dynamical 

equivalent model between the on-orbit tethered satellite and its ground physical model is 

obtained. As a result, the space dynamics environment of the tethered satellite can be 

simulated via the thrust forces and the torque of a momentum wheel on the satellite simulator. 

The numerical results of the on-orbit tethered satellite show the chaotic motions of the attitude 

motion of mother satellite. The experiment shows that the torque of momentum wheel as a 

negative damping is able to suppress the chaotic motion. 

 

1. Introduction 

There are different varieties of nonlinear dynamic phenomena in tethered satellite systems such as 

tumbling [1], internal resonances [2], chaotic motions [3,4], and the like [5]. It is necessary to reveal 

the nonlinear dynamics of a tethered satellite system for accurate control [6]. 

It is clear that a two-body tethered satellite system exhibits chaotic motions [7], especially for that of 

large orbit eccentricity [8]. Steiner investigated the transient chaos of a tethered satellite by 

finite-element method [9]. Misra et al. found that the three-dimensional coupled pitch and roll 

motions of a tethered spacecraft will be chaotic whatever in elliptic orbit or in circular orbit [10]. 

Many on-orbit missions of tethered satellite had been carried out [11], since the first space flying in 

1966 for creating artificial gravity by spinning two spacecrafts connected by a tether. At the same 

time, various types of experiment setup for the dynamics and control of tether system in laboratory 

scale have been constructed. For example, Kojima et al. proposed a slope-adjustable turntable to 

simulate the in-plane motion of a tethered satellite system in elliptic orbit, making use of a piece of 

dry ice in an attempt to reduce the friction between turntable and satellite [12[. However, the 

nonlinear dynamics and control of tethered satellite systems via ground-based experiment in 

consideration of the microgravity and the Coriolis force still needs to strengthen further. 

This paper studies the chaotic motion of a tethered satellite system with the attitude motion of mother 

satellite. A dynamics similarity between the on-orbit tethered satellite and its physical model is 

presented. 
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2. Chaotic motions of tethered satellite system 

Consider an in-plane tethered satellite system moved in an unperturbed Kepler circular orbit, as 

shown in figure 1. The mother satellite is treated as a rigid body of mass M, and the subsatellite is 

envisioned to be a point of mass m that is attached to the mother satellite through an inelastic 

massless tether of length l at the joint point of the offset distance <<l to the mass center of the 

mother satellite. It is assumed that the mass of the mother satellite is much greater than that of the 

subsatellite, and the center of mass of the system coincides with that of the mother satellite. The 

earth-centered inertial frame is denoted by O-XYZ, the origin of which is located at the center of the 

Earth. Ix, Iy and Iz are the principal moments of inertia of the mother satellite expressed in its body 

frame. 

By an application of Lagrange’s equations, the dynamic equation reads 
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Figure 1. Model of tethered satellite system. 

It can be shown that if we regard 2  as a perturbation to the attitude motion of mother satellite, the 

unperturbed system in equation (1) becomes [4] 

 0 sin cos      (2) 

with the Hamiltonian 
2 2

2 0 sinh     , so that the attitude motion is divided into two regions by 

the separatrix of the energy 2 0h  . In the case of 2 00 h   , one has 

 
2

2 0 2 2 0 2 2 2 0arcsin[ sn( , )],   cn( , ),   /k k h k k h          (3) 

which corresponds to an oscillation near the local equilibrium of system. For 2 0h  , it arrives at a 

tumbling rotation as follows 

 
2

0 2 2 2 2 2 2 0arcsin[sn( ,1/ )],   dn( ,1/ ),  /k h h k k h         (4) 

Note that the solutions corresponding to 2 0h   form the heteroclinic orbit expressed in the 

following 

 0 0 0[ ( ), ( )] { arcsin[tanh( )], sech( )}              (5) 

which pass through two unstable equilibria of the unperturbed system. The existence of heteroclinic 

intersections depends on the following Melnikov function 
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where , 
ia , and 

ib  are the expansion coefficient [4]. 

The calculation of equation (6) shows that the Melnikov function ( )M   has simple zeroes if 
2 2

1 3sin 0h     , this implies there exist the heteroclinic intersection between the stable manifold 

and the unstable manifold. The global Poincaré maps for 
0 1  , 

1 0.001  , and 
2 0.01   are 

shown in figure 2. One can see from figure 2 that the attitude motion becomes chaotic as the 
disturbance increases gradually. The time histories, the Poincaré mapping, the power spectrum 
density as well as the largest Lyapunov exponent are given in figure 3 for 

0 0 0 0( , , , )    (0.1,0.52, π/2,0.001)  . As can be seen in figures 3(a) and 3(b), the time evolution 

exhibits an aperiodic motion. In addition, the continuous power spectrum density and the positive 
largest Lyapunov exponent indicate also the chaotic behavior as shown in figure 3(c) and 3(d). 
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Figure 2. Poincaré map. 
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(c) Power spectrum density 
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Figure 3. Chaotic motions by numerical calculations of the original system. 
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3. Dynamical equivalent model 

The experimental system and its mechanics model for verifying the chaotic motion mentioned above 

is shown in figure 4, which consists of a marble table, a satellite simulator of the mass m, a dynamic 

measurement system, a communication system, and a power system. Four pressure-type solenoid 

valves and a momentum wheel were mounted on the simulator to yield the thrust forces Ft and Fr and 

the torque Mz, respectively. 
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Figure 4. The experimental system and its mechanics model. 

The states of the satellite simulator are measured by a 3D-dynamic-measuring-system (DMS). The 

required thrust forces and the torque for simulating the Coriolis force and the on-orbit microgravity 

are computed by a host computer, according to a dynamical equivalent model. Meanwhile, they are 

sent back to the on-board computer on the simulator by wireless communication modules. 

To implement the ground-based experiment, it is necessary to get a dynamical equivalent model for 

the on-orbital tethered satellite system. According to Lagrange’s equations, the ground physical model 

shown in figure 4 obeys 
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where 1 /l  , 2 / zm l I  . Here, the overdot represents the derivative with respect to the time t. 

By exerting the same torque to the mother satellite in figure 1 and converting equation (1) to the time 
scale, one can find a dynamically equivalency between equations. (1) and (7) by setting 
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This means that the dynamics of the tethered satellite system arised from the Coriolis force and the 

microgravity can be demonstrated with the help of the thrust forces and the torque. 
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4. Experimental results 

The mass of the satellite simulator was 12.2kg, the tether length and the offset distance were set at 
0.88 and 0.01, respectively. The identified inertia moment of the simulator was 0.078kgm2. 

Accordingly, the non-dimensional parameters were 0 3  , 1 0.0114  , and 2 1.376  . Given the 

true anomaly of on-orbit tethered satellite system is so small that resulting the equivalent thrust force 
is unable to push the simulator to move, due to the inevitable friction between the simulator and the 
marble platform. In order to match the experimental demand for the thrust forces, thus, the true 
anomaly used in the experiment was taken as 0.06rad/s  , according to the test on the thrust forces 

for true anomaly rates shown in figure 5. The corresponding thrust forces and the torque are displayed 

in figure 6 for the initial states 0 0 0 0( , , , )    = (0.1,0, 0.1,0) . 
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Figure 5. The maximum thrust force versus the true anomaly rate. 
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Figure 6. Time histories of the thrust forces and the torque. 

The equivalent torque in equation (8) is not taken into account in experiment first. In this situation, 

the numerical and experimental results show that the motion of tether exhibits a regular harmonic 

oscillation as shown in figure 7. The attitude motion of mother is depictured in figure 8. One can see 

from figures 8(a) and 8(b) that an irregular oscillation occurs in the tethered satellite system. 

Furthermore, the continuous power spectrum and the positive largest Lyapunov exponent show that 

the irregular oscillation falls into a chaotic motion, as seen in figure 8(c) and 8(d). The experimental 

results suggest that chaotic motions and an irregular oscillation can co-exist in a tethered satellite 

system. 
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Figure 7. The motion of tether versus time for 0 0 0 0( , , , )    = (0.396,0, 1.173,0) . 
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(c) Power spectrum density 
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Figure 8. The attitude motion of mother for 0 0 0 0( , , , )    = (0.396,0, 1.173,0) . 

To suppress the chaotic motion of mother, a damping moment, z zM kI   , provided by the 

momentum wheel on the satellite simulator is put into the equivalent torque shown in equation (8), 

with the damping coefficient k=0.05. At the same way, the attitude motion of mother under the 
damping moment is obtained as shown in figure 9. According to the single peak of power spectrum 
and the negative Lyapunov exponent, it implies that the chaotic motion is guided to a regular 
oscillation near a relative equilibrium position. This means the chaotic motion is successfully 
suppressed via the negative damping moment. 
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Fig. 9. The attitude motion under damping moment for 0 0 0 0( , , , )    = (0.398,0, 1.08,0) . 

 

5. Conclusions 

 

The chaotic motion of tethered satellite system can be simulated by ground-based experimental 

system. The dynamical equivalent model between the on-orbit tethered satellite and its ground 

physical model can be obtained via dynamics similarity. So, the dynamics of on-orbit tethered 

satellite system arised by the Coriolis force and the on-orbit microgravity can be demonstrated in 

ground experiment. In addition, the experiment results show that the chaotic motion of mother is 

guided to a regular oscillation via the negative damping moment provided by the momentum wheel 

on satellite simulator. 
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