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Abstract ： This paper investigates damping optimization design of variable-stiffness 

composite laminated plate, which means fibre paths can be continuously curved and fibre 

angles are distinct for different regions. First, damping prediction model is developed based on 

modal dissipative energy principle and verified by comparing with modal testing results. Then, 

instead of fibre angles, the element stiffness and damping matrixes are translated to be design 

variables on the basis of novel Discrete Material Optimization (DMO) formulation, thus 

reducing the computation time greatly. Finally, the modal damping capacity of arbitrary order 

is optimized using MMA (Method of Moving Asymptotes) method. Meanwhile, mode tracking 

technique is employed to investigate the variation of modal shape. The convergent 

performance of interpolation function, first order specific damping capacity (SDC) 

optimization results and variation of modal shape in different penalty factor are discussed. The 

results show that the damping properties of the variable-stiffness plate can be increased by 

50%-70% after optimization. 

1.  Introduction 

Fibre-reinforced materials are prominent for their high specific strength and high specific stiffness, 

which can effectively reduce the weight of the aviation spacecraft. More importantly, composite 

laminates, which belong to a kind of polymer with viscoelastic properties, excel metals in damping 

performance. Therefore, composite laminates have been widely used in aviation, aerospace and other 

fields. 

In recent years, in order to further excavating the excellent performance of composite materials, 

variable stiffness design concept[1~2]
 
was proposed. This concept implies that fibre paths are not 

necessarily straight but can be continuously curved( see Fig.1(a) and Fig.1(b)). Thus, the properties at 

every point of the panel can be varied independently leading to optimal tailoring of the composite 

panel to design requirements. Two methodologies could be applied to optimize variable stiffness 

laminates[3]: 1) by using specific curves to define the fibre orientations, the parameters of the curves 

are then optimized; 2) the methodology originally proposed by Zehnder and Ermanni[4] involves a 

parameterization scheme for the purpose of minimizing design variables and accommodating 
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production focuses on zoning the smallest, inseparable material entities called "Patches", where the 

orientation angles cohere to build laminated composite structures.  

 

Fig 1(a).  constant-stiffness plate 

 

Fig 1(b) variable-stiffness plate 

Aiming at different performance parameters of composite optimization, Stegmann and Lund[5] are 

pioneers for putting forward Discrete Material Optimization (DMO) formulation. Prof Bruyneel[6] 

improved the material characteristics interpolation function of DMO, which requires fewer design 

variables and better convergence rate comparing to classical DMO. A composite cylinder was 

optimized by Blom[7] for maximum buckling under pure bending by varying the stiffness in 

circumferential direction. Ferreira et.al[8] applied the hierarchical optimization in the design of 

laminated fiber composites with the goal of simultaneously designing macrostructural and 

microstructural levels of structures in terms of plies orientations, fiber volume fractions and fiber 

cross-sectional shapes, respectively. 

For fibre reinforced composite laminates with same material properties of each ply, the stiffness 

properties can be denoted by 12 lamination parameters which represent the layup configuration of 

laminates (fiber orientation angles, ply thickness and number of plies). Liu et.al[11] found that the 

feasible region based on only a few ply groups is very close to the overall one lamination parameters 

determined by infinite plies, and they established a two step optimization scheme for simultaneous 

optimization of layup configuration and in-plane fiber distribution for maximum stiffness design of 

laminated plates. Setoodeh[11] investigated the optimal design of fibre reinforced rectangular 

composite plates for minimum compliance by varying the lamination parameters of plates. Khani[12] 

also introduced lamination parameters as design variables to maximize the strength of perforated 

laminates with axial tensile.  

While most of previous studies mainly focus on optimizing the laminates' stiffness, strength, and 

natural frequency, few works have been concerned with the optimal design for damping structures. 

The superior damping performance of composites plays a vital role in vibration control, noise 

reduction and the ability to increase the structural life under cyclic loading and impact loading in 

various engineering applications[13]. Therefore, this paper employ Hencky's theory of shells and 

elastic-viscoelastic assumption to solve the laminates SDC based on finite element method (FEM), 

whose results are then compared with experimental data from other open literatures. By selecting the 

stiffness matrix and damping matrix as optimization variables, and applying discrete material 

optimization method (DMO), single plate damping optimization model is established, where MMA is 

utilized to solve the problem. The paper concludes with a discussion on the modal shape change in the 

iteration under different penalty factors alongside their eventual optimization results, and damping 

optimization results under different boundary conditions and different number of patches zoned. 

2.  Damping model and verification 

2.1.  Geometric matrix 
By applying the plate/shell theory of Hencky, displacements of an arbitrary point in the plate can be 

expressed as:  
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wherein, ( , )y x y and ( , , )x x y t are rotation angles of middle surface. Strain matrix can be expressed 

as: 
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where   1 1 1 2 2 2 8 8 8

Te
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nodal point of element. Geometric matrix can be defined as:
 
   1 2 8...B B B B . When 

quadrilateral 8 node shell elements are applied, shape function can be written as: 
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Then, the geometric matrix can be obtained as: 
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The shape function  ,iN    is in their local coordinates while the derivation of Eq.(4) at global 

coordinates, coordinate transformation relation can be expressed as: 
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where [J] is a 2-order Jacobi matrix. By correlating Eq.(4) and Eq.(5), the shape function of coordinate 

point (ξ, η) and first order partial derivative of shape function can be obtained. 

2.2.  Specific damping capacity 

At present, there are two kinds of damping prediction model of composite materials: strain energy 

method and complex modulus method. The complex modulus method is pronounced for its clearness 

in concept definition, which shares a similarity with dynamics problems of undamped system in their 

convenience to describe the dynamic properties of viscoelastic materials. However, the disadvantage is 

that the process involves complex computations, which leads to a lower speed as a result. 

According to the elastic-viscoelastic assumption, specific damping capacity（SDC） can be 

defined as a ratio of dissipated energy and total strain energy of the system in one period: 

 
U

U
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   (6) 

The total strain energy of composite laminates can be expressed as 
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where   is model shape, which can be obtained by solving the characteristic equation and K  is total 

stiffness matrix of laminated plates. 

The dissipated energy in the structures can be assumed as the sum of dissipated energy formed 

stresses from every direction. 
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Or it can be expressed simply as: 
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ψij is loss factor of every direction, which can be obtained by improvement of bridging model 

proposed earlier[14]. Eq.(8) can be written as: 
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T  is coordinate transformation relation expressed as 
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where, cos , sinl m   .   is a rotation angle between global coordinate system and local 

coordinate system(Fig 2.). 

 
Fig 2. A lamina with local and global coordinate system 

Therefore, the equivalent damping coefficient matrix dD  can be expressed as: 
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The total dissipated energy of composite laminates can be expressed in the form of finite element: 
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where dK  is total damping matrix： 
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The total strain energy U  and dissipated energy U  can be obtained by Eq.(7) and(15). The SDC 

of any order can be obtained by substituting U  and U into Eq.(6). 

2.3.  Model verification 

In order to verify the validity of the model, the present SDC results, Rayleigh-Ritz analysis and others’ 

experiments[15] are compared here. From Table1, the results of this paper agree well with the result of 

Rayleigh-Ritz analysis and experiments[15]. Specific material parameters can be found in the 

references[15]. Therefore, this example can prove the validity of the model of this paper preliminary.  

Table 1. The[45°/-45°/0°/0°/0°/45°/-45°/0°/0°]s 913C-TS plate, 

(a=254(mm), b=254(mm), h=2.320(mm)) 

SDC（%） 

Rayleigh - Ritz 1.98 2.37 1.18 1.79 1.83 2.10 

model 2.09 2.36 1.23 1.80 1.88 2.15 

experiment[15] 2.00 2.14 1.28 1.79 1.82 — 

error (%) 4.5 10.2 -3.90 0.558 3.29 — 

3.  Optimization models and sensitivity analysis 

3.1.  Optimization models 

Discrete Material Optimization (DMO) can be considered as groundbreaking work of multi-phase 

topology optimization[16]. Its core idea is to treat different laying angles as different materials. Thus 

the optimization problem of composite laying angle is converted into the optimal selection of 

materials, where the angle corresponding to optimal material is equivalent to the optimal angle for the 

optimization problem. 
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According to the DMO method, the material stiffness Dk of an arbitrary "patch" is defined as a 

weighted sum of the candidate material properties: 

 1 1 2 2 3 3 4 4

1

n

k i i

i

D wD wD w D w D w D


      (17) 

where n is the number of candidate angle, Di is the material stiffness corresponding to a candidate 

material(0°, ±45°, 90°). The value of weight coefficient wi is set between 0 and 1. Besides, with the 

convergence of objective function, every "patch" must have one single weight of value 1 which stands 

for the optimal angle, and all other weights of value 0. In this paper, Shape Function based 

Penalization(SFP)
[6]

 is applied, where weight coefficient is written as: 
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Compared with the scheme in DMO
[5]

, the advantages of weight coefficient in SFP are that it can 

effectively reduce design variables and lead to a convergence more easily. 

In order to force the selection of only one material at the solution, intermediate values of the weight 

coefficient is penalized, and p in equation (18) is the penalty factor, thus limiting the occurrence of 

any blending of materials in a given physical ply at the optimum. For measuring the convergence 

condition of the interpolation function in optimization results, define: 
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where Wc is the number of convergence weight coefficient, and Ws is the total number. If the eventual 

result of interpolation function is not completely convergent, the intermediate values will be 

artificially adjusted to 0/1, whereas the values are rounded to get the final optimization results. 

Based on finite element method, this paper converts the optimal ply angle select problem to the 

problem of selecting the optimal element stiffness/damping matrix: 
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where Ki and Ci represent the element stiffness matrix and damping matrix of each material element, Kj 

and Cj represent the element stiffness matrix and damping matrix under each ply angle, inasmuch as 

the element stiffness matrix and the element damping matrix corresponding to each ply angle can be 

calculated before the iteration, then stored for the later calling in the iteration, which greatly saves the 

integral time. 

In some engineering applications, in order to obtain damping as large as possible, 1/ r   is 

chosen as the objective function, whose minimum value represents the maximum of SDC. Whereas 

the models of the optimization problem with arbitrary order modal damping ratio as the objective 

function is defined: 
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3.2.  Sensitivity analysis 

For composite laminates, it is assumed that ply angle has little impact on modal shape. Then, the first 

and second derivative of λ with respect to any variable can be written as: 
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In order to prove the above hypothesis in numerical examples, the model tracking technique is 

employed to estimate the change of modal shape during the course of iterations.  
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where 1,i i   represent the acquired modal shape after previous and present iteration respectively. The 

closer that the value of MAC is to 1, the smaller the change will be. 

3.3.  Optimization algorithm 

After the optimization model is built, an appropriate optimization algorithm will be another important 

problem. In the various optimization problems, the optimization algorithms based on derivatives are 

most efficient with minimum computational cost. In 1987, Prof. Svanberg[17] developed MMA 

algorithm based on explicitly near convexity. During each iteration, the original objective and 

constraint function are turned into explicit near iteration point, and the expressions are shown as: 
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where
 k
jx  denote the jth variable in the kth iteration, and the range of value satisfies: 
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Among them, 
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jL  and
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jU  are equations of moving asymptotes adjusting the convexity of 

optimization problem, and corresponding expressions can be written as: 
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where 
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j  and 
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j  

are “moving limits”, which satisfies:  
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ijp  and 

 k
ijq  

are the first order Talyor series expansion of objective function and constraint equation 

at present iteration point for variables respectively.  
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For Eq.(24), 
     ( )k k

i if x f x  at 
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jx x , therefore, 
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The approximate solution of original problem can be obtained using the sub-problems of Eq.(24)

based on duality theory . For MMA, only the function and derivative at present design point are need 

during the iteration computations, so it is suitable for large scale optimization problems with few 

constraints.  
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4.  Numerical results 

This paper takes first order SDC as optimum objective, the candidate angles are 0°,  45° and 90°. 

The laminates are made of T300/BMP316, and material parameters are given in Table 2. 

Table 2. Material parameter of T300/BMP316 

E1 

(GPa) 
E2、E3 

(GPa) 

G12、G23、
G13(GPa) 

μ ρ 

(Kg/m

3) 

Ψ11 

(%) 

Ψ22 

(%) 

Ψ12 

(%) 

Ψ23 

(%) 

Ψ13 

(%) 

128.8 8.3 4.1 0.355 1578 0.55 4.96 5.92 5.63 0.49 

Taking square plate as example, the size is 100*100mm, 8mm thick.  

Case 1 Variation of modal shape and convergence of interpolation function in different penalty 

factors 

In this case, the plate has 10*10 patches, and divided into 10*10 elements. Respectively penalty 

factor take 1, 1.2 and 1.5, the variation of modal shape was depicted in Fig 3, the convergence of 

interpolation function was depicted in Fig 4. 
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Fig 3. variation of modal shape in different 

penalty factors 
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Fig 4. convergence of interpolation function 

in different penalty factors 

In fig 3, it is seen that penalty factor is equal to 1, the change of model shape is gently; and then p 

is equal to 1.3, the model shape varied intensely, besides, the variation range of MAC is bigger. We 

can conclude that with the increase of p, the variation of model shape more drastic and the variation 

range of MAC will expand. In fig 4, it is seen that along with the increase of p, the quantity of middle 

value will increase. In conclusion, the value of p is closer to 1, the smaller the model shape change 

will be and the better the convergence of interpolation function. 

Case 2: Comparison of optimization results in different penalty factor 

Table 3. comparison of optimization results in different penalty factor 

p iterations objective 

1 27 2.84% 

1.2 21 3.19% 

1.5 18 3.19% 

1.8 31 3.19% 

2 38 3.03% 

The results are presented in Table 4. The value of penalty factor has effect on value and 

convergence speed of objective function. When the value of penalty factor is smaller or larger, 

convergence speed is slow, and the solution is not optimal solution. When the penalty factor value 

between 1.2 and 1.8 can get the optimal solution, but the convergence speed is different. Therefore, 
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penalty factor values should be chosen carefully to ensure good optimization results and reduce the 

amount of calculation. 

Case 3: Comparison of first order SDC optimization results in different number patches 

For comparison, penalty factor take 1 in this case. 
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Fig 5. the result of 4*4 patches plate 
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Fig 6. the result of 6*6 patches plate 
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Fig 7. the result of 8*8 patches plate 

Table 4. Comparison of first order SDC optimization results in different number patches 
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patches objective（%） iterations R Promotion 

1*1 1.79 3 1 - 

4*4 2.65 13 1 48% 

6*6 2.84 28 1 58% 

8*8 3.03 20 1 69% 

The results are presented in Fig 5-7. The 4*4 patches plate has lesser design variables, therefore it 

has highest convergence rate; the 8*8 patches plate convergence rate is higher than 6*6 patches plate, 

but the ply orientation of 8*8 patches plate is disordered, we can deduce the 8*8 block may haven't get 

the optimal value, this may be the reason why its convergence speed is faster than 6*6 patches plate. 

By the way, for ordinary desktop with 6G memory and 2.8GHz clock speed, each iteration will take 

0.70s, therefore, by introducing the element stiffness and damping matrices as optimization variables, 

a lot of integral operation can be saved, thus reducing the computation time greatly. 

As seen in Eq.(6), the essence of SDC optimization problem is the multi-objective optimization 

problem with two objectives including maximize dissipated energy U  and minimize strain energy

U . Therefore, the ply orientations of plates have two laws, On the edge of the plate, the fibre should 

be surround by the center of plate, thus, this can make the strain energy of the plate minimal; in the 

center of the plate, fibre direction is given as 0° and 90° to get maximized dissipated energy. 

Case 4: Comparison of first order SDC optimization results in different boundary conditions 

Penalty factor take 1 in this case. Comparison of first order SDC optimization results in four 

corners clamped and four edges clamped plate. 
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Fig 8.  results of 5*5 patches with four edges clamped plate 
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Fig 9. the result of 5*5 patches with four corners clamped plate 

As shown in Fig. 8 and 9, owing to the higher stiffness of four edges clamped plate, the 

optimization result of four edges clamped plate is lower than four corners clamped plate. On the other 
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hand, the convergence rate of four corners clamped plate is faster than four edges clamped plate. This 

suggests that the convergence rate is associated with boundary conditions. Comparison of the two 

layer angle result can be found, on the edge of the plate, the fibre orientation is different, but in center 

of plate the ply orientation results are basically the same. The reason for this is that the boundary 

conditions have a little impact on center of plate. 

5.  Conclusions 

Damping prediction model is developed based on modal dissipative energy principle in this paper, the 

first order SDC was solved by FEM. Then, instead of fibre angles, the element stiffness and damping 

matrixes are translated to be design variables on the basis of novel Discrete Material Optimization 

(DMO) formulation, thus reducing the computation time greatly.  

The numerical example shows: 1. The value of penalty factor is closer to 1, the smaller the model 

shape change and the better the convergence of interpolation function will be, when penalty factor is 

equal to 1, the model shape can be considered as a constant; 2. Compared with classic laminates, with 

the increase of patches number, the SDC will increase 48%—69% by optimization design; 3. By 

introducing the element stiffness and damping matrices as optimization variables, a lot of integral 

operations can be saved, thus reducing the computation time greatly; 4. With four edges clamped 

boundary conditions, the fibre should be surround by the center of plate to maximize the first order 

SDC, On the edge of the plate,  in the center of the plate, fibre direction is given as 0° and 90°; 

5.Owing to resulting higher stiffness, the four corners clamped optimum solution is bigger than four 

edges clamped plate. 
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