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Abstract. This paper develops a model reduction method for a large-scale interconnected system that
consists of linear dynamic components. In the model reduction, we aim to preserve physical characteristics
of each component. To this end, we formulate a structured model reduction problem that reduces
the model order of components while preserving the feedback structure. Although there are a few
conventional methods for such structured model reduction to preserve stability, they do not explicitly
consider performance of the reduced-order feedback system. One of the difficulties in the problem with
performance guarantee comes from nonlinearity of a feedback system to each component. The problem
is essentially in a class of nonlinear optimization problems, and therefore it cannot be efficiently solved
even in numerical computation. In this paper, application of an equivalent transformation and a proper
approximation reduces this nonlinear problem to a problem of the weighted linear model reduction. Then,
by using the weighted balanced truncation technique, we construct a reduced-order model with preserving
the feedback structure to ensure small modeling error. Finally, we verify the effectiveness of the proposed
method through numerical experiments.

1. Introduction
Many practical dynamic systems are large-scale and contain specific internal structure in their
components. Since the model of the large-scale system tends to be very complicated, it is difficult to
directly apply the control and analysis method to the model. As a preliminary stage for control and
analysis, we need to extract the essence from the complicated model and construct a reduced-order
model.

It is desirable for reduce-order models to preserve the physical characteristics such as the internal
structure[1][2] . Although there are many works on model reduction methods for linear dynamic systems,
most of them do not explicitly consider structure in the target model. Furthermore, the reduced-modeling
error should be minimized under some theoretical guarantee.

In this paper, we focus on the feedback structure in a linear large-scale system. Then, we propose a
model reduction method that preserves the structure and guarantee the performance of the reduced-order
model.

The constitution of this paper is as follows. First, we introduce the definition ofH2 norm in Section
2 and formulate the model reduction problem in Section 3. Second, we propose a new model reduction
method in Section 4 and an accuracy of the reduced-order model is evaluated by an accuracy index
in Section 5. Finally we verify the effectiveness of the proposed method by numerical experiments in
Section 6 and conclude this paper in Section 7.
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2. Notation and Definition
In this paper, we evaluate the accuracy of a reduced-order model by usingH2 norm. We consider a
continuous-time system described by

ẋ = Ax+Bu, (1)

y = Cx+Du, (2)

whereA ∈ Rn×n, B ∈ Rn×1, C ∈ R1×n andD ∈ R are constant matrices. Define the transfer function
of the system as

G(s) := C(sI −A)−1B +D (3)

and let the realization ofG(s) described byA, B, C andD be

G(s) := (A,B,C,D) . (4)

Then, theH2 norm ofG(s) is defined as

∥G(s)∥H2 :=

√
1

2π

∫ ∞

−∞
trace(G(jω)∗G(jω))dω. (5)

3. Problem Formulation
In this paper, we consider a single-input/single-output feedback system illustrated in Fig. 1. The
system consists of two linear dynamic components, and they are connected in a feedback form. These
components are described bym-th andn-th order models, and their transfer functions areF (s) andG(s),
respectively. Let a realization ofG(s) be

G(s) = (A,B,C,D) , (6)

whereA ∈ Rn×n, B ∈ Rn×1, C ∈ R1×n andD ∈ R are constant matrices. Then, we define the transfer
function of the feedback system that consists ofF (s) andG(s) as

FB(F,G) :=
G(s)F (s)

1 +G(s)F (s)
. (7)

The aim of this paper is to construct a reduced-order feedback model that approximately expresses
FB(F,G). In particular, we design a reduced-order model ofG(s), which is denoted byGr(s), such that
FB(F,Gr) properly approximatesFB(F,G). Let a realization ofGr(s) be

Gr(s) = (Ar, Br, Cr, Dr) , (8)

whereAr ∈ Rr×r, Br ∈ Rr×1, Cr ∈ R1×r andDr ∈ R are constant matrices. Then, we define the
transfer function of the error system betweenFB(F,Gr) andFB(F,G) as

E(s) :=
G(s)F (s)

1 +G(s)F (s)
− Gr(s)F (s)

1 +Gr(s)F (s)
. (9)

We aim to construct a reduced-order model with preserving feedback structure and minimizing theH2

norm ofE(s).
We summarize the problem setting described above to formulate the following optimization problem.

Define a cost functionJ :

J(Gr) := ∥E(s)∥H2
=

∥∥∥∥ G(s)F (s)

1 +G(s)F (s)
− Gr(s)F (s)

1 +Gr(s)F (s)

∥∥∥∥
H2

. (10)

Then, the optimization problem is defined as

Problem 1 FindA∗
r, B

∗
r , C∗

r andD∗
r minimizingJ .
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Fig. 1. Block diagram of feedback system

4. Model Reduction Method
Since Eq. (10) is nonlinear in parametersAr, Br, Cr andDr, it is difficult to solve the optimization
problem defined as Problem 1 in a computationally efficient way. This is one of the difficulties appear in
the structure-preserving model reduction problems.

A simple approach to the problem is to apply a general linear model reduction method directly to
G(s). We expect that if the error inG(s) andGr(s) is sufficiently small,J(Gr) is small as well. For
example, we can apply the well-known balanced truncation method[3] to G(s). The resulting reduced-
order model ofG(s) is denoted asGbt

r (s). In this approach, the feedback structure is not considered.
Obviously, thisGbt

r (s) is not the optimal solution to Problem 1.

4.1. Structure-Preserving Model Reduction
First, we apply an approximation technique to Problem 1 in order to reduce it to a convex optimization
problem. Then, we propose a new model reduction method that consists of two stages, which are briefly
introduced here. In Stage 1, we construct an intermediate reduced-order model by applying the weighted
balanced truncation method[3] . In Stage 2, we further transform the intermediate model to a reduced
order modelFB(F,Gr) by solving the proposed optimization problem.

4.1.1. Problem Approximation
First, we transform Eq. (9) to

E(s) = W (s)G(s)−Wr(s)Gr(s), (11)

whereW (s) andWr(s) are described by

W (s) :=
F (s)

1 +G(s)F (s)
, Wr(s) :=

F (s)

1 +Gr(s)F (s)
, (12)

respectively. By this transformation,E(s) is expressed as the error betweenG(s) andGr(s) with the
frequency weightsW (s) andWr(s). Now, supposing that

W (s) ≈ Wr(s) (13)

we can reduce Eq. (11) into

E(s) ≈ E′(s) := W (s)(G(s)−Gr(s)). (14)

Let a realization ofW (s) andE′(s) be

W (s) = (Aw, Bw, Cw, Dw) , E′(s) =
(
Ã, B̃, C̃, 0

)
, (15)
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respectively, whereÃ, B̃ andC̃ are described by

Ã =

A 0 BCw

0 Ar BrCw

0 0 Aw

 , B̃ =

BDw

BrDw

Bw

 , C̃⊤ =

 C
−Cr

0

 ,

respectively. Defining

J ′(Gr) :=
∥∥E′(s)

∥∥
H2

= ∥W (s)(G(s)−Gr(s))∥H2
, (16)

from Eq. (13), we haveJ ′(Gr) ≈ J(Gr). We obtain the approximated optimization problem as

Problem 2 FindA∗
r , B

∗
r , C∗

r andD∗
r minimizingJ ′.

Minimization ofJ ′ is rewritten as

minimize γ subject to J ′ =
∥∥E′(s)

∥∥
H2

< γ. (17)

Then, the constraint on theH2 norm is reduced to linear matrix inequalities (LMIs) as follows. We
introduce the following lemma.

Lemma：LMI descriptionof H2 characteristic for continuous-time systems[4]� �
Consider acontinuous-time system represented byE′(s) := (Ã, B̃, C̃, 0).
Then, for aγ > 0, the following statements are equivalent.
(i) ∥E′(s)∥H2 < γ
(ii) There exist positive definite symmetrical matricesP ∈ Rn×n andQ ∈ Rl×l such that the

following LMIs hold (
PÃ+ Ã⊤P PB̃

B̃⊤P −I

)
< 0, (18)(

Q C̃

C̃⊤ P

)
> 0, (19)

trace(Q) < γ2. (20)� �
By usingthese LMI description of theH2 constraint, we further reduce Problem 2 into the following

problem:

Problem 3 FindA∗
r , B

∗
r andC∗

r minimizingγ subject to Eqs. (18)–(20).

By the transformation above, we reduce Problem 2, in which Eqs. (18)–(20) are imposed on a functional
space, into a problem with matrix inequality constraints. However, there is still difficulty to solve the
problem. Since the inequalities in Eqs. (18)–(20) are bilinear to decision matrix variablesAr, Br, Cr,
P andQ, the problem cannot be solved in an effective way. Therefore, in the following method, we
first obtain an intermediate approximated modelGwbt

r (s) = (Awbt
r , Bwbt

r , Cwbt
r , Dwbt

r ) to reduce the
bilinear matrix inequalities (BMIs) into LMIs for fixedAwbt

r andBwbt
r . Then, we solve Problem 3 with

Ar = Awbt
r andBr = Bwbt

r to obtainC lmi
r andDlmi

r . Then, by the resulting linear reduced-order model
Glmi

r (s) = (Awbt
r , Bwbt

r , C lmi
r , Dlmi

r ), we constructFB(F,Glmi
r ), which has the same feedback structure

asFB(F,G) and approximately minimizesJ in Problem 1.
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4.1.2. Proposed Model Reduction Method
We summarize the discussion above to the following model reduction method. The method is composed
of two stages as follows.

Proposed ModelReduction Method� �
Stage 1:ModelReduction for G(s)

With W (s) of Eq. (12), apply the weighted balanced truncation method toG(s), which is one
of the components consistFB(F,G) of Eq. (7), and construct a linear reduced-order model

Gwbt
r (s) =

(
Awbt

r , Bwbt
r , Cwbt

r , Dwbt
r

)
. (21)

Stage 2:Model Reduction forFB(F,G)
Solve Problem 3 withAr = Awbt

r andBr = Bwbt
r to construct

Glmi
r (s) =

(
Awbt

r , Bwbt
r , C lmi

r , Dlmi
r

)
. (22)

By the resultingGlmi
r (s), we obtainFB(F,Glmi

r ), which has the same feedback structure as
FB(F,G).� �

5. Evaluation of Model Reduction Method
In this section, we evaluate the accuracy of the proposed reduced-order modelFB(F,Glmi

r ). The
accuracy ofFB(F,Glmi

r ) is compared withFB(F,Gbt
r ), whereGbt

r is a linear reduced-order model
that is constructed by the balanced truncation method.

By the proposed method, we construct the reduced-order feedback modelFB(F,Glmi
r ). It should

be noted thatFB(F,Glmi
r ) decreases the value ofJ ′, which is anapproximatedcost function ofJ of

Problem 1. Therefore, we need to evaluate the accuracy of the reduced-order models for Problem 1. This
can be evaluated by the value ofJ . Define a new index:

Je := J(Gbt
r )− J(Glmi

r ). (23)

Je > 0 implies that the proposed reduced order modelFB(F,Glmi
r ) is a more accurate solution to

Problem 1 than the modelFB(F,Gbt
r ) by the conventional balanced truncation method. Since we

cannot guaranteeJe > 0 theoretically, we verify the effectiveness of the proposed method by numerical
experiments in many trials.

6. Numerical Experiment
6.1. Objective System
In this section, we consider a feedback system shown in Fig. 2. In this figure,F (s) is a controller
that is designed in advance.G(s) is a coupled spring-mass-damper system, which expresses distributed
parameter systems such as vibration behavior in buildings. The system is described by the equation of
motion as

Mẍ+ Cẋ+Kx = bu, (24)
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Fig. 2. Block diagram of feedback system with a connected spring-mass-damper system

where

x =
[
x1 x2 · · · xN

]⊤
M = diag(m1,m2, · · · ,mN )

C = diag(c1, c2, · · · , cN )

K =


k1 + k2 −k2 0 0 · · · · · · · · · 0
−k2 k2 + k3 −k3 0 · · · · · · · · · 0

...
... ... ... ... ... ...

...
0 · · · · · · · · · 0 −kN−1 kN−1 + kN −kN
0 · · · · · · · · · 0 0 −kN kN


b =

[
b1 b2 · · · bN

]⊤
andxi is the displacement of each mass,mi the mass,ki the spring constant andci the viscous friction
coefficient, respectively, wherei ∈ {1, · · · , N} is the index number．Letting a new state variable as

x̃ =
[
ẋ⊤ x⊤

]⊤
,

we obtain the first-order differential equation

d

dt

[
M 0
0 IN×N

] [
ẋ
x

]
=

[
−C −K

IN×N 0

] [
ẋ
x

]
+

[
b
0

]
u. (25)

Then, defining

A =

[
M 0
0 IN×N

]−1 [ −C −K
IN×N 0

]
, B =

[
M 0
0 IN×N

]−1 [
b
0

]
,

we can describe the system by state space representation

d

dt
x̃ = Ax̃+Bu, (26)

y = Cx̃. (27)
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6.2. Conditionsof Experiment
In Fig. 2,F (s) is described by

F (s) =
10−5s+ 1

10−3s+ 1
.

Thevalues of the parameters in the system Eqs. (26)–(27) are given as follows.

• Number of mass：N= 10

• Model order：n= 20

• Each constant：Setting numbers in random such thatmi is between 1 and 10,ki between 1 and105,
andci between 0 and 1.

• Matrix B andC：

B =

[
1
019

]
, C =

[
110 010

]
.

By this matrix choice ofB andC, we represent that an actuator input fromF (s) controls the velocity
ẋ1 of the first-massm1, and the information on the summation of the velocity of all masses is measurable.

In this experiment, we will construct a linear reduced-order modelGr(s), in particular, a 6-
dimentional state space model. Under the conditions above, we evaluate the model reduction methods
in 200 trials by the index introduced in Section 5. To describe and solve LMIs, we use YALMIP[5] and
SeDuMi[6] , respectively.

6.3. Experiment Result
The result for numerical experiments in 200 trials is summarized in Table 1. In the table, every trial is
classified into two categories depending on the sign ofJe. As defined in Section 5,Je > 0 means the
effectiveness of the proposed method for Problem 1. From the table, we see that the proposed method
generates more accurate reduced-order feedback models than the conventional method for almost 75
percent of all trials.

We note here that the values ofJ andJ ′ are small enough in almost all trials, which means that the
proposed approximation given in Eq. (13) is proper. The details are omitted in this paper.

The gain plots of the original feedback modelFB(F,G) and the reduced-order feedback models
FB(F,Gbt

r ) andFB(F,Glmi
r ) for a trial are shown in Fig. 3. From the figure, the peak preserved in

FB(F,Glmi
r ) is different from that inFB(F,Gbt

r ). The proposedFB(F,Glmi
r ) successfully preserves the

maximum peak, which is the most important property in the originalFB(F,G), while the conventional
FB(F,Gbt

r ) does not. Although the proposed reduced-order model is not always the best as illustrated
in Table 1, we showed that it can be a better model at least for some case. The proposed method is
practically useful for constructing a reduced-order model with preserving the feedback structure.

7. Conclusion
In this study, we proposed a new model reduction method for a feedback system. Then, we verified the
effectiveness of the proposed method by numerical experiments on a large-scale interconnection spring-
mass-damper systems.

In future works, we will theoretically show the effectiveness of the proposed method and apply to a
real system.

Table 1. The result for numerical experiments in 200 trials. Every trial is classified into two categories
depending on the signs ofJ .

Je > 0 Je < 0
Trial number 147 53
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Fig. 3. Gain plot of a trial. The blue dashed line represents the original feedback modelFB(F,G). The
green chain line represents the reduced-order feedback modelFB(F,Gbt

r ) by the conventional method.
The red solid line represents the reduced-order feedback modelFB(F,Glmi

r ) by the proposed method.
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