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Abstract. This paper develops a model reduction method for a large-scale interconnected system that
consists of linear dynamic components. In the model reduction, we aim to preserve physical characteristics
of each component. To this end, we formulate a structured model reduction problem that reduces
the model order of components while preserving the feedback structure. Although there are a few
conventional methods for such structured model reduction to preserve stability, they do not explicitly
consider performance of the reduced-order feedback system. One of the difficulties in the problem with
performance guarantee comes from nonlinearity of a feedback system to each component. The problem
is essentially in a class of nonlinear optimization problems, and therefore it cannot be efficiently solved
even in numerical computation. In this paper, application of an equivalent transformation and a proper
approximation reduces this nonlinear problem to a problem of the weighted linear model reduction. Then,
by using the weighted balanced truncation technique, we construct a reduced-order model with preserving
the feedback structure to ensure small modeling error. Finally, we verify the effectiveness of the proposed
method through numerical experiments.

1. Introduction

Many practical dynamic systems are large-scale and contain specific internal structure in their
components. Since the model of the large-scale system tends to be very complicated, it is difficult to
directly apply the control and analysis method to the model. As a preliminary stage for control and
analysis, we need to extract the essence from the complicated model and construct a reduced-order
model.

It is desirable for reduce-order models to preserve the physical characteristics such as the internal
structuréll? . Although there are many works on model reduction methods for linear dynamic systems,
most of them do not explicitly consider structure in the target model. Furthermore, the reduced-modeling
error should be minimized under some theoretical guarantee.

In this paper, we focus on the feedback structure in a linear large-scale system. Then, we propose a
model reduction method that preserves the structure and guarantee the performance of the reduced-order
model.

The constitution of this paper is as follows. First, we introduce the definitidid.ofiorm in Section
2 and formulate the model reduction problem in Section 3. Second, we propose a new model reduction
method in Section 4 and an accuracy of the reduced-order model is evaluated by an accuracy index
in Section 5. Finally we verify the effectiveness of the proposed method by numerical experiments in
Section 6 and conclude this paper in Section 7.
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2. Notation and Definition
In this paper, we evaluate the accuracy of a reduced-order model by Hsimgprm. We consider a
continuous-time system described by
& = Ax + Bu, QD
y = Cz + Du, (2)

whered € R™*" B ¢ R™*1 C ¢ R andD € R are constant matrices. Define the transfer function
of the system as

G(s):=C(sI —A)'B+D (3)
and let the realization aff(s) described by4, B, C andD be
G(s) .= (A,B,C,D). 4)

Then, theH; norm of G(s) is defined as

1G(s) 1, = ¢ o / Z trace(G(jw)* G(jw))de. (5)

3. Problem Formulation

In this paper, we consider a single-input/single-output feedback system illustrated in Fig. 1. The
system consists of two linear dynamic components, and they are connected in a feedback form. These
components are describedfyth andn-th order models, and their transfer functions B(e) andG(s),
respectively. Let a realization ¢f(s) be

G(s) = (A,B,C, D), (6)

whered € R™*", B ¢ R™*1 ' € R1*™ andD < R are constant matrices. Then, we define the transfer
function of the feedback system that consist$'¢f) andG(s) as
G(s)F(s)
FB(F = — 7
B = 1 GoFG) 7)
The aim of this paper is to construct a reduced-order feedback model that approximately expresses

FB(F,G). In particular, we design a reduced-order modek¢$), which is denoted by, (s), such that
FB(F, G,) properly approximateBB(F, G). Let a realization of7,.(s) be

GT(S) = (ArthC’r)Dr)’ (8)

whereA, € R™", B, € R™!, C, € R™*" andD, € R are constant matrices. Then, we define the
transfer function of the error system betwdé(F, G,) andFB(F, G) as

Bls)ie COFE)  Go)F(s)
T 11 GB)F(s) 1+ Go(s)E(s)

We aim to construct a reduced-order model with preserving feedback structure and minimizidg the
norm of E(s).

We summarize the problem setting described above to formulate the following optimization problem.
Define a cost functiod':

(9)

— _ || _G()F(s) Gr(s)F(s)
TGr) =BG, = H1 TG 1+ Gr(s)F(s)
Then, the optimization problem is defined as

Problem 1 Find Ay, By, C; andD; minimizing J.

(10)

Ho
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Fig. 1. Block diagram of feedback system

4. Model Reduction Method

Since Eq. (10) is nonlinear in parametets, B,, C, and D,, it is difficult to solve the optimization
problem defined as Problem 1 in a computationally efficient way. This is one of the difficulties appear in
the structure-preserving model reduction problems.

A simple approach to the problem is to apply a general linear model reduction method directly to
G(s). We expect that if the error it¥(s) and G, (s) is sufficiently small,J(G,.) is small as well. For
example, we can apply the well-known balanced truncation m&ihiodG (s). The resulting reduced-
order model ofG(s) is denoted a&2t(s). In this approach, the feedback structure is not considered.
Obviously, thisGP!(s) is not the optimal solution to Problem 1.

4.1. Structure-Preserving Model Reduction

First, we apply an approximation technique to Problem 1 in order to reduce it to a convex optimization
problem. Then, we propose a new model reduction method that consists of two stages, which are briefly
introduced here. In Stage 1, we construct an intermediate reduced-order model by applying the weighted
balanced truncation methBt In Stage 2, we further transform the intermediate model to a reduced
order modeFB(F, G,) by solving the proposed optimization problem.

4.1.1. Problem Approximation
First, we transform Eq. (9) to

E(s) = W(s)G(s) — Wy (s)Gr(s), (11)

whereWV (s) andW,(s) are described by

Wi(s) : F(s)

' F(s) B
W(s) T 11 G (s)F(s)’

=TGR -

respectively. By this transformatiot;(s) is expressed as the error betweg(s) andG, (s) with the
frequency weight$¥' (s) andW,.(s). Now, supposing that

W (s) ~ Wy(s) (13)
we can reduce Eq. (11) into
E(s) = E'(s) := W(s)(G(s) — Gy(s))- (14)
Let a realization ofV (s) andE’(s) be

W (s) = (Aw, Buw, Cuo, Du) , E'(s) = (21, B,C, o) : (15)
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respectiely, whereA, B andC are described by

} A 0 B(C, 3 BD,, 3 C
A=1|0 A, B.C,|,B=|B.D,|,C"=]|-C|,
0 0 Ay By, 0
respectively. Defining
J(Gr) = ||E'(9)|| , = W (s)(G(5) = Gr(5))l , » (16)

from Eq. (13), we havd’(G,) ~ J(G,). We obtain the approximated optimization problem as
Problem 2 Find A, B}, C andD; minimizing .J'.
Minimization of J' is rewritten as

minimize v subject to J' = HE’(s)HH2 < 7. a7

Then, the constraint on thH, norm is reduced to linear matrix inequalities (LMIs) as follows. We
introduce the following lemma.

e Lemma : LMI descriptiorof H, characteristic for continuous-time systéths N

Consider aontinuous-time system representedfys) := (A, B, C,0).

Then, for ay > 0, the following statements are equivalent.

) [1E ()] <

(i) There exist positive definite symmetrical matrides= R™*" and@Q € R'*! such that the
following LMIs hold

R .
(M55 " ) <o (19
(2 %o w
trace(Q) < 2. (20)

_

By usingthese LMI description of théfs constraint, we further reduce Problem 2 into the following
problem:

Problem 3 Find A}, B andC}: minimizing~y subject to Egs. (18)—(20).

By the transformation above, we reduce Problem 2, in which Eqgs. (18)—(20) are imposed on a functional
space, into a problem with matrix inequality constraints. However, there is still difficulty to solve the
problem. Since the inequalities in Egs. (18)—(20) are bilinear to decision matrix variaplds., C,,

P and @, the problem cannot be solved in an effective way. Therefore, in the following method, we
first obtain an intermediate approximated mo@gt(s) = (A¥bt, B¥bt Cwbt Dwbt) to reduce the
bilinear matrix inequalities (BMIs) into LMIs for fixed*** and B}***. Then, we solve Problem 3 with

A, = AP and B, = BY** to obtainC™! and D™ Then, by the resulting linear reduced-order model
GImi(s) = (AYPt, Bybt COmi plmi) 'we construcFB(F, GI™), which has the same feedback structure
asFB(F, G) and approximately minimizes in Problem 1.
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4.1.2. Poposed Model Reduction Method
We summarize the discussion above to the following model reduction method. The method is composed
of two stages as follows.

e Proposed ModdReduction Method N

Stage 1:ModelReduction for G(s)
With W (s) of Eq. (12), apply the weighted balanced truncation metha@(tg, which is one
of the components consiBB(F, G) of Eq. (7), and construct a linear reduced-order model

GV (s) = (ApY, By, Oyt D). (21)

Stage 2:Model Reduction forFB(F, G)
Solve Problem 3 wittd, = A¥P* andB, = B! to construct

G}nmi<8) — (A;)‘vbt’ B;th, C}ﬂmi, D}ami) ) (22)

By the resultingG™i(s), we obtainFB(F, GI™), which has the same feedback structure |as
FB(F,G).
J

5. Evaluation of Model Reduction Method
In this section, we evaluate the accuracy of the proposed reduced-order RIBCE|GI™). The
accuracy ofFB(F,G'™) is compared withFB(F, GP'), whereGP! is a linear reduced-order model
that is constructed by the balanced truncation method.
By the proposed method, we construct the reduced-order feedback FBEE| GI™). It should
be noted thaFB(F, GI™) decreases the value df, which is anapproximatedcost function of.J of
Problem 1. Therefore, we need to evaluate the accuracy of the reduced-order models for Problem 1. This
can be evaluated by the value.6f Define a new index:

Jo = J(GPY — J(Gy. (23)

Je > 0 implies that the proposed reduced order mddBI( ', GI™) is a more accurate solution to
Problem 1 than the moddB(F, G') by the conventional balanced truncation method. Since we
cannot guaranteé. > 0 theoretically, we verify the effectiveness of the proposed method by numerical
experiments in many trials.

6. Numerical Experiment

6.1. Objective System

In this section, we consider a feedback system shown in Fig. 2. In this figure,is a controller

that is designed in advancé:(s) is a coupled spring-mass-damper system, which expresses distributed
parameter systems such as vibration behavior in buildings. The system is described by the equation of
motion as

Mi +Cx 4+ Kz = bu, (24)
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Fig. 2. Block diagram of feedback system with a connected spring-mass-damper system

where
r = [331 o xN]T
M = diag(my,ma, -+ ,mpy)
C = diag(ci,ca, - ,cnN)
(k1 + ko —ko 0 0o --- 0 ]
— ko ko+ks —ks 0 - 0
K = : T . . :
0 coe e 0 —kn_1 kno1+ky —kn
I 0 R 0] 0 —kn kN_

b = [b1 by-- by]'

andz; is the displacement of each mass, the massk; the spring constant ang the viscous friction
coefficient, respectively, whedec {1,--- , N} is the index number. Letting a new state variable as

=27 27",

we obtain the first-order differential equation
[0 nal E =l ST B[] &
Then, defining
Sl O I o B VAN IR
0 Inxn Inxn 0|7 0 Inxn 0]~
we can describe the system by state space representation

d

— 7% = A¥+ B 2

e Z + Bu, (26)
y = C2. 27)
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6.2. Conditionof Experiment
In Fig. 2, F'(s) is described by
10755+ 1
T 10341
Thevalues of the parameters in the system Egs. (26)—(27) are given as follows.
Number of mass : M= 10
Model order : n= 20

Each constantSetting numbers in random such that is between 1 and 1@; between 1 and0?,
andc; between 0 and 1.

Matrix B andC :

F(s)

B= [019] , C =1y Op].

By this matrix choice of3 andC, we represent that an actuator input frétfs) controls the velocity
i1 of the first-massn, and the information on the summation of the velocity of all masses is measurable.

In this experiment, we will construct a linear reduced-order ma@g(s), in particular, a 6-
dimentional state space model. Under the conditions above, we evaluate the model reduction methods
in 200 trials by the index introduced in Section 5. To describe and solve LMIs, we use YAUMHR
SeDuMi9l, respectively.

6.3. Experiment Result

The result for numerical experiments in 200 trials is summarized in Table 1. In the table, every trial is
classified into two categories depending on the sigti.0fAs defined in Section 5], > 0 means the
effectiveness of the proposed method for Problem 1. From the table, we see that the proposed method
generates more accurate reduced-order feedback models than the conventional method for almost 75
percent of all trials.

We note here that the values Hfand.J’ are small enough in almost all trials, which means that the
proposed approximation given in Eq. (13) is proper. The details are omitted in this paper.

The gain plots of the original feedback modé&B(F, G) and the reduced-order feedback models
FB(F,G"") and FB(F, G'™) for a trial are shown in Fig. 3. From the figure, the peak preserved in
FB(F,GI™) is different from that irf B(F, GEt). The proposedB(F, GI™) successfully preserves the
maximum peak, which is the most important property in the origitig{ ', G), while the conventional
FB(F, G®") does not. Although the proposed reduced-order model is not always the best as illustrated
in Table 1, we showed that it can be a better model at least for some case. The proposed method is
practically useful for constructing a reduced-order model with preserving the feedback structure.

7. Conclusion
In this study, we proposed a new model reduction method for a feedback system. Then, we verified the
effectiveness of the proposed method by numerical experiments on a large-scale interconnection spring-
mass-damper systems.

In future works, we will theoretically show the effectiveness of the proposed method and apply to a
real system.

Table 1. The result for numerical experiments in 200 trials. Every trial is classified into two categories
depending on the signs df.

Jo>0| J.<0
Trial number| 147 53
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Fig. 3. Gain plot of a trial. The blue dashed line represents the original feedback #Bdel G). The
green chain line represents the reduced-order feedback mBdél, GPt) by the conventional method.
The red solid line represents the reduced-order feedback mdiél, GI™) by the proposed method.
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