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Abstract. Discrete Flow Mapping (DFM) was recently introduced as a mesh-based high
frequency method for modelling structure-borne sound in complex structures comprised of
two-dimensional shell and plate subsystems. The method has now been extended to model
three-dimensional meshed structures, giving a wider range of applicability and also naturally
leading to the question of how to couple the two- and three-dimensional substructures. We
consider this problem for the case of a three dimensional interior fluid domain, enclosed by a
two dimensional shell/plate system. In Discrete Flow Mapping, the transport of vibrational
energy between substructures is typically described via a local interface treatment where wave
theory is employed to generate reflection/transmission and mode coupling coefficients. In our
case the entire two-dimensional substructure forms a global interface whose radiating properties
will depend on both the geometry and the frequency. In this paper we discuss how such a
model may be formulated, including both structural radiation and the back-loading of the fluid
pressure on the structure.

1. Introduction

Predicting the vibro-acoustic response of complex structures in the high-frequency limit is a
major challenge in structural dynamics [1]. Dynamical Energy Analysis (DEA) was put forward
in Refs. [2, 3, 4] as a robust and relatively widely applicable method, with the ability to
interpolate between Statistical Energy Analysis (SEA) [5, 6, 7] and full ray tracing [8, 9, 10].
DEA is a ray-based energy transport method, where wave energy is propagated along the ray
trajectories prescribed by the high-frequency asymptotics of the underlying wave equation. In
particular, DEA relaxes one of the key assumptions of SEA requiring well-separated subsystems;
this means that the subsystems can be chosen, to some extent, in an arbitrary manner. One
particularly convenient choice is to apply DEA directly on finite element meshes [11, 12]. Not
only does this remove the considerable modelling effort required in SEA, but the geometric
simplicity of typical mesh elements can also be exploited to perform the DEA computations
with high efficiency using the so-called Discrete Flow Mapping (DFM) approach.

Recently, DFM was extended to three-dimensional tetrahedral meshes in Ref. [13]. In this
paper we consider the coupling of two- and three-dimensional DFM for modelling high-frequency
energy distributions in fluid-structure interaction problems. In particular, we will present a
derivation of the global interface problem given by the coupling of a two-dimensional structural
bending wave and a three-dimensional acoustic wave using DFM. We consider a point source
excitation of the structure with angular frequency ω, and formulate the coupled wave problem
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Figure 1. A thin elastic plate Ωs with boundary Γs surrounded by fluid of volume Ωf . The
phase-space boundary density ρA(s, ps) on the structure is prescribed with a position s ∈ Γs and
a tangential slowness ps = sin(γ)/cb for direction γ ∈ (−π/2, π/2) and bending wave velocity cb.
The volume boundary density ρV (r,pr) in the fluid is prescribed with a position r ∈ Ωs and a
tangential slowness pr = [sin(θ)/c0 φ]T for (θ, φ) ∈ [0, π/2)× [0, 2π) and c0 the speed of sound
in the fluid. Note that θ is the angle with respect to the normal vector n and φ is the azimuthal
angle in the plate.

in the frequency domain. We derive an energy relationship on the surface of the plate and
hypothesize that this relationship must be satisfied by both the two-dimensional (bending wave)
and three-dimensional (acoustic wave) energy densities at each point on the plate. In order to
extend this coupling to the phase-space densities in DFM, we impose a directionality relationship
based on the bending wave properties [14].

The energy relationship on the plate surface will relate the energy density of a bending
wave with wavenumber kb to an acoustic energy density with wavenumber k0. We note that
the transport of both energy densities can be modelled separately by DFM and then coupled
together at the parts of the mesh common to both the fluid and the structure. Unfortunately,
the energy relationship is not well defined for k0 ≈ kb, and radiation below the critical frequency
when kb > k0 leads to rapidly decaying evanescent waves, which are neglected in our ray-based
analysis. Modelling structure-borne sound radiation below the critical frequency would require
incorporating wave effects into the model. Nevertheless, in the regime of propagating structural
radiation when kb < k0, a coupled 2D and 3D DFM approach could provide significant insights
into the vibro-acoustic properties of complex fluid-structure interaction problems. In particular,
the proposed methodology can be applied at frequencies that are too high to be accessible by
conventional finite and boundary element methods. In comparison with an SEA treatment, a
coupled DFM approach provides a more widely applicable model with a considerable increase
in the spatial resolution of the predicted vibroacoustic energy distributions.

2. Problem formulation

In this section we state a general fluid-structure interaction problem for a vibrating thin plate.
Consider a flat plate Ωs with boundary Γs coupled to a fluid volume Ωf ⊂ R

3 as depicted
in Fig. 1. Without loss of generality we place the plate Ωs in the xy-plane, that is, we fix
z = 0. According to the standard Kirchhoff plate theory, the displacement u arising from a
time-harmonic bending wave may be coupled to the fluid loading due to a velocity potential ψ
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via [15]

Eh3

12(1 − ν2)

(

∆− k2b
) (

∆+ k2b
)

u = iρfωψ +Aδ(x− x0)δ(y − y0), (x, y, z) ∈ Ωs, (1)

∂zψ = −iωu, (x, y, z) ∈ Ωs, (2)

∆ψ + k20ψ = 0, (x, y, z) ∈ Ωf , (3)

where the coupled system is excited by a single frequency (ω ≫ 1) point source of magnitude
A ∈ R at (x0, y0) ∈ Ωs. Here the bending wavenumber k4b = 12(1 − ν2)ρsω

2/(Eh2),
where E is the Young’s modulus, ν is the Poisson’s ratio of the plate material and h is the
thickness. Furthermore, ρs and ρf are material and fluid densities, respectively, and the acoustic
wavenumber k0 = ω/c0 is the ratio of the angular frequency ω to the speed of sound c0 in the
fluid. Alternatively, we could have placed the additional point source term on the right hand
side of the fluid equation (3). Note that the wave operator on the left of equation (1) has been
factorised into dispersive propagating and evanescent decaying parts [16].

Neglecting the contributions due to evanescent waves in equation (1), the left hand sides of
the decoupled equations (1) and (3) separately model dispersive and propagating bending waves
and (propagating) acoustic waves with wavenumbers kb and k0, respectively. As a result, the
high-frequency energy distribution due to both waves can be modelled using DFM, with the
distinction that the bending wave energy density in the plate is characterised by an area phase
space density and the acoustic wave energy density in the fluid is characterised by a volume phase
space density. Here we restrict to a scalar wave description of both the fluid and the structural
waves; the propagation of multiple plate wave modes (bending, shear and pressure) using DFM
is detailed in Ref. [12]. We proceed in the next section by deriving an energy relationship from
the coupling equation (2) on the surface of the plate to relate the energies of the structural and
acoustic waves.

3. Structure-borne sound: energy and directionality relationships

Following the analysis of [14], we assume a plane wave solution in Ωs of the form

u(x, y) = Ueikxxeikyy

with wavenumber vector (kx, ky) such that k2b = k2x+k
2
y. In Ωs, the energy density Eu associated

with the wave function u is proportional to the square amplitude, i.e. Eu = ρshω
2|u|2 = ρshω

2U2.
Note that Eu describes the energy per area in two-dimensions for a plate of thickness h. In order
to match the bending wave solution to the acoustic wave solution with wavenumber k0 on the
surface of the plate, we seek the velocity potential wave solution in the following form:

ψ(x, y, z) = Ψeikxxeikyyeikzz. (4)

The wave function (4) must satisfy the Helmholtz equation (3) and so we have that k2
0

=

k2x + k2y + k2z , which implies that kz =
√

k2
0
− k2x − k2y. Note that the acoustic energy density

due to the velocity potential ψ in the fluid domain Ωf is defined as Eψ = ρfk
2
0
|ψ|2 = ρfk

2
0
Ψ2.

Here, the energy density Eψ defines an energy per volume as usual. From the coupling relation
(2) on the surface of plate Ωs, we obtain the following relationship between the bending and the
velocity potential wave amplitudes U and Ψ:

Ψ = −
ω

kz
U = −

ω
√

k2
0
− k2b

U. (5)
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Figure 2. Distinction between the radiation direction angle ϑ and the spherical coordinate
system angle θ = π/2− ϑ.

The wave amplitude relationship (5) for kb < k0 therefore implies the following relationship on
the surface of the plate:

Ψ2 =
ω2

k2
0
− k2b

U2, kb < k0. (6)

A direct consequence of (6) is that the energy densities Eu and Eψ are related via

ρshEψ = ρf
k20

k2
0
− k2b

Eu, kb < k0, (7)

and henceforth we will refer to (7) as an energy relationship. If kb > k0 then kz = i
√

k2b − k2
0
,

leading to evanescent waves in (4) decaying in the normal direction to the plate. We then obtain
from the amplitude relationship (5) that

Ψ2 =
ω2

k2b − k2
0

U2, kb > k0, (8)

on the surface of the plate.
Notice that both (6) and (8) are not well defined for kb ≈ k0, when the amplitude of the

velocity potential Ψ becomes infinite. In reality, the finite size of the plate and the boundary
conditions will prevent the amplitude from blowing up. This leads to a restriction in our
modelling and the concept of a critical frequency. The critical frequency fc is defined when
kb = k0 and we find that

fc =
c2
0

2π

√

12(1− ν2)ρs
Eh2

. (9)

Our analysis is therefore restricted to frequencies above the critical frequency fc in the
propagative wave regime.

Above the critical frequency (9), bending waves radiate sound into Ωf in a direction
ϑ ∈ (0, π/2] relative to the surface normal vector n (see Fig. 2). For the purposes of our
DFM model it will be convenient to express the angle ϑ in terms of a local upper hemisphere
coordinate system for a point r ∈ Ωs as shown in Fig. 1. In this coordinate system we label the
azimuthal angle φ ∈ [0, 2π) and the longitudinal angle θ ∈ [0, π/2). The angle θ with respect to
normal n points in the direction of the radiated sound wave such that θ = π/2 − ϑ, see Fig. 2.
Then expressing the bending wavenumber vector (kx, ky) in terms of the direction (ϑ, φ) leads
to

kx = k0 sinϑ cosφ, ky = k0 sinϑ sinφ.

We therefore obtain the following directionality relationship:

kb = k0 sinϑ = k0 cos θ, kb < k0. (10)
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For future reference, we note from (10) that sin θ =
√

1− (kb/k0)2. The directionality
relationship (10) then leads to an expression for the spherical coordinate system direction angles

(θ, φ) = (arccos(kb/k0), φ),

for an acoustic wave of wavenumber k0 radiated due to a bending wave of wavenumber kb and
direction φ inside the plate. This observation, together with the energy relationship (7), plays
an important role in coupling the 2D and 3D phase space densities of DFM. We proceed in the
next section with a brief overview of DFM in two and three dimensions.

4. Brief overview of DEA and DFM

In this section we provide a brief overview of DEA and DFM in two and three dimensions;
more details can be found in Refs. [11, 12, 13, 17, 18]. For simplicity, we first consider a single
two- or three-dimensional domain Ω with boundary Γ and an initial ray density ρ0

Γ
on Γ, either

from interpreting boundary data in terms of an energy density [13] or resulting from interior
sources [17]. Then the ray density ρ on the boundary Γ may be transported deterministically
along straight-line trajectories (or possibly stochastically [19]) to the next intersection with the
boundary by the phase-space boundary integral operator [2]

B[ρ](X) =

∫

w(Y )δ(X − ϕ(Y ))ρ(Y ) dY. (11)

Here X = (s, ps) for two-dimensional domains and X = (r,pr) in three dimensions; Y is defined
analogously. Thus X and Y represent phase-space coordinates on the boundary, that is, s or r
parametrise the boundary of the domain, and ps or pr denote the direction (or slowness vector)
component tangential to the boundary at s or r, respectively. The boundary map ϕ(Y ) takes
a ray with starting position and direction specified by Y and maps it at constant speed along
a straight line path to the next intersection with the boundary. At this boundary intersection
point the ray is typically assumed to undergo a specular reflection; for multi-domain problems
then reflection and transmission are both possible. Note that ϕ is invertible in convex domains.
The weight function w contains absorption factors such as e−µL, where L is a distance between
two boundary intersection points and µ is a parameter specifying the rate of dissipation. The
stationary density on the boundary induced by an initial boundary distribution ρ0

Γ
is then

obtained using

ρΓ =

∞
∑

n=0

Bn[ρ0Γ] = (I − B)−1[ρ0Γ], (12)

where Bn contains trajectories undergoing n reflections at the boundary. The energy density
distribution in the interior region can subsequently be obtained from the boundary density ρΓ
by projecting down onto coordinate space.

A generalization to multi-domain (DEA) or meshed structures (DFM) with N sub-domains
(or elements) Ωj, j = 1, . . . , N , is straightforward by introducing a multi-domain boundary map
ϕi,j and a weight function wi,j describing the flow from the boundary of the domain Ωj to the
boundary of the domain Ωi. Note that Ω = ∪Nj=1

Ωj becomes the union of all sub-domains and

Γ becomes the union of all sub-domain boundaries, i.e. Γ = ∪Nj=1
∂Ωj . Each sub-domain Ωj

has its own phase-space boundary coordinates. We then define the boundary integral operator
Bi,j, which transports the phase space density ρΓ from the boundary phase-space of Ωj to the
boundary phase-space of Ωi. If the properties of two neighbouring domains Ωj and Ωi are
different then, in addition to the dissipative factor, the weight function wi,j will account for the
probability of transmission or reflection at the common edge or face in two or three dimensions,
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respectively. The operator B is then constructed from the set of inter-domain operators Bi,j and
the stationary density is computed again according to (12).

In the next section we derive a coupling relationship between a 2D (area) phase-space density
resulting from the structural bending waves and a 3D (volume) phase-space density resulting
from the acoustic waves in the coupled fluid domain.

5. Coupling of the phase space densities in two and three dimensions

Consider a 2D boundary phase-space density ρA(s, ps) and a 3D boundary phase-space density
ρV (r,pr). The position coordinate s parametrises Γs and ps = sin(γ)/cb with direction
γ ∈ (−π/2, π/2) and bending wave velocity cb = ω/kb. Here γ is the angle between the
propagation direction and the normal vector to Γs pointing into the domain Ωs. The 3D volume
boundary energy density is specified at a position r ∈ Γf , where Γf is the boundary of Ωf ,
and with tangential slowness pr = [sin(θ)/c0 φ]T for direction coordinates θ ∈ [0, π/2) and
φ ∈ [0, 2π) as shown in Fig. 1. Note that we consider the case where the fluid boundary Γf
coincides with the entire structure Ωs, which forms a global interface. In order to relate ρA and
ρV on the structure Ωs, we introduce the following mappings:

mr : φ→ (s, γ). (13)

Here mr maps the angle φ ∈ [0, 2π) at a point r ∈ Ωs described above to the associated position
s ∈ Γs and direction γ at s ∈ Γs pointing towards r, see Fig. 1. This mapping is invertible in
convex domains1, which we assume from hereon for simplicity. For clarity, will write mr out
fully in the form

mr(φ) := (σr(φ), ψr(φ)) = (s, γ). (14)

The directionality relationship (10) and the invertibility of the mapping (13) lead to an expression
for pr in the form

pr =





√

c2b − c2
0

c0cb
φ





T

=





√

c2b − c2
0

c0cb
m−1

r
(s, γ)





T

.

Imposing the energy relationship (7) at each point on the surface of the plate Ωs and for each
direction specified by (kx, ky), the following phase-space energy coupling relationship may then
be derived for kb < k0:

ρV

(

r, c−1

0
c−1

b

√

c2b − c2
0
, φ

)

=
ρfk

2
0

ρsh(k20 − k2b )
ρA(σr(φ), sin(ψr(φ))/cb), ∀r ∈ Ωs, (15)

which specifies the radiation into Ωf for the energy density ρA. By reciprocity we may also
rearrange (15) to express the fluid loading on the structure due to ρV in the form

ρA(ϕ(s, ps); r) =
ρsh(k

2
0 − k2b )

ρfk
2
0

ρV

(

r, c−1

0
c−1

b

√

c2b − c2
0
,m−1

r
(s, γ)

)

, ∀r ∈ Ωs. (16)

The boundary map ϕ has been applied on the left to reflect the fact that here we are
specifying the flow from the volume into the structure, and thus into the structural mesh cell
boundaries. Note that the coupling relationship (15) is defined for a fixed directions θ. In order
to apply a discretisation and approximate the boundary densities using orthogonal polynomial

1 More precisely, mr is invertible provided that Ωs is starlike with respect to the point r.
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basis expansions, it will be necessary to move the directional dependence to the right hand side
and rewrite the relation (15) as

ρV (r,pr) =
ρfk

2
0

ρsh(k20 − k2b )

c0δ
(

c−1

0

(

sin θ − c−1

b

√

c2b − c2
0

))

sin θ
ρA(σr(φ), sin(ψr(φ))/cb). (17)

Here the delta distribution in (17) specifies the direction θ = arccos(kb/k0). Finally, note that
the relationship (16) is specified with reference to a fixed position r ∈ Ωs. We actually require
that the density is specified on the boundary Γs. This means that we must effectively treat each
r ∈ Ωs that reaches (s, γ) under the action of the map mr as a source point illuminating the
boundary phase-space coordinate leading to

ρA(ϕ(s, ps)) =
ρsh(k

2
0 − k2b )

ρfk
2
0

∫

Ωs

δ(γ − ψr(φ))ρV

(

r, c−1

0
c−1

b

√

c2b − c2
0
,m−1

r
(s, γ)

)

dr. (18)

The delta distribution here fixes the points r along the trajectory starting at (s, ps) with direction
γ.

6. Conclusions and further work

In this paper we have discussed the coupling of phase-space densities in two- and three-
dimensions in order to apply DFM to the fluid-structure interaction problem of a vibrating
elastic structure coupled to a fluid volume. By considering the sound radiated by a time-
harmonic bending wave above the critical frequency, we have derived energy and directionality
relationships between the fluid and the structure in the high frequency regime. Based on these
relationships, we have detailed a set of coupling relations for the two- and three-dimensional
boundary phase space densities of DFM on the global interface between the fluid and the
structure. This paper has therefore provided a theoretical background for coupling phase-space
densities in two- and three-dimensional domains, leading to a set of relations that may be
discretised and investigated numerically in future work.
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