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Abstract. This paper concerns an investigation into the characteristics of a linear-nonlinear 

coupled electromagnetic energy harvester. The nonlinear oscillator consists of a linear (mass-

spring-damper) oscillator with two additional horizontal springs. It is assumed that the 

vibration is restricted to one direction of harvesting mass to which the parallel magnetic field is 

induced. Of interest here, however, is the bubble shaped response curves for the amplitude-

frequency response, and its potential benefits on the energy harvesting. The Harmonic balance 

method is used to analysis the power amplitude-frequency response of the system. It is found 

that the linear and nonlinear resonances could interact with each other at moderate excitation 

levels, so bubble shaped response curves are formed. The benefits of the nonlinearity on the 

energy harvesting are achieved. The results are also validated by some numerical work. Then 

the averaged power under Gaussian white noise is also calculated numerically, the results 

demonstrate that the bubble shaped response curves design produces more power than other 

designs under random excitation. 

1.  Introduction 

Converting ambient wasted energy to electricity is a feasible and popular approach to power wireless 

sensors in remote and hostile environments [1-3]. Vibration-based energy harvesting devices are often 

modelled mechanically as a base-excited linear single-degree-of-freedom mass-spring-damper system 

[4, 5]. However, the maximum power harvesting could occur only when the devices is excited at its 

natural frequency. As a result, it cannot accommodate the random frequency-variant excitations in the 

ambient environment [6].  

A promising approach is to use stiffness nonlinearity to overcome the narrow bandwidth problem. The 

studies on the nonlinear configuration have been conducted theoretically or experimentally by many 

researchers [7-10]. Because it generally has a broader bandwidth than linear system, a tuning 

mechanism embedded in the device to broaden the frequency range is not necessary. Brennan [7] has 

demonstrated that the bending of frequency-response curves due to the nonlinearity can be beneficial. 

The bi-stable energy harvesting has also been widely investigated [11-14]. Harne [15] describes the 

wide variety of bi-stable energy harvesters. For non-resonance behavior, this device permits coupling 

between the environmental excitation and the energy harvester over a wider range of frequencies. The 

MOVIC2016 & RASD2016 IOP Publishing
Journal of Physics: Conference Series 744 (2016) 012076 doi:10.1088/1742-6596/744/1/012076

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



 

 

 

 

 

 

multi-degree-of-freedom method is another option for broadening the bandwidth [16, 17]. A Coupled 

energy harvesting system is sometimes used in preference to a single-degree-of-freedom linear energy 

harvester because of its superior harvesting frequency band [17]. Wu and Harne [18] have investigated 

the dynamics of a coupled linear oscillator-bistable energy harvester system, and demonstrated the 

advantages of the coupled system for energy harvesting. Chen [19] has also concerned the 

enhancement of the harvesting power via internal resonance.  

Detached resonance curves (DRCs) appear as isolated loops of solutions in the frequency 

response curves (FRCs) of oscillating systems with nonlinearity [20]. Gatti and Brennan [21] 

predicted the appearance of either inner or outer DRCs and investigated the effect of 

parameters in the appearance of such features. They studied the system under the assumption 

of very small ratio between the mass of the attachment and that of the main structure. 

Detached resonance curves have been predicted in multi-degree-of freedom nonlinear 

oscillators, when subject to harmonic excitation [22]. Although the influence of nonlinearity 

on FRCs of the dynamical systems gives rise to unique phenomena that are of interest from 

practical applications [23], such as vibration absorption[23], electro-magnetic shaker [22] and 

sensing. But useful applications of DRCs within specific coupled nonlinear mechanical 

systems are still relatively rare in the literature, especially from the perspective of the energy 

harvesting. 
This article concerned the usage of the bubble shaped response curves for the amplitude-frequency 

response in the linear-nonlinear coupled system to enhance the transduction of vibratory energy 

harvesters. And the amplitude-frequency response is given by harmonic balance method. Of 

interesting, the forming of the bubble shaped response curves are analyzed.  

The article is organized as follows: Following the introduction, Section 2 describes the configuration 

of the linear-nonlinear coupled energy harvesting system, and the derivation of the expressions for the 

power amplitude-frequency response. Section 3 presents simulations to illustrate the behaviour of the 

system when subject to swept-sine excitation. Section 4 then evaluates the performance of the linear-

nonlinear coupled energy harvesting by averaged power using Gaussian white noise excitation. The 

article is the closed with some conclusions in Section 5.  

2.  Modelling and Analysis 

Fig. 1 shows a lumped parameter model of a linear-nonlinear coupled energy harvesting system. It 

consists of a primary nonlinear energy harvester attached on a linear oscillator (mass-spring-damper 

system). The nonlinear energy harvester is very similar to the classic single degree-of-freedom 

(SDOF) model described in literature, for example, but here there are two lateral springs with stiffness 

ak
 
besides the spring 3k  and damper 

3c . This system has been described in detail in [24, 25] so only 

brief description of the dynamic behaviour is given in this section. The vibration of the permanent 

magnet mass 2m
 
producing magnetic flux intensity B, could move along the coils with effective coil 

length coilL , which are fixed to the frame. Resulting in electric current I, the electromagnetic part is 

characterized by Resistance R, Coil inductance indL . The additional linear oscillator (mass-spring-

damper system) with mass 1m , stiffness 1k
 
and damping 1c , is placed onto the nonlinear energy 

harvester by a spring with stiffness 2k , and viscous damper 2c .  

Of particular interest is the harvesting power, which is the mechanical energy to the electrical energy 

due to the excitation motion ex . The horizontal springs introduce geometric stiffness nonlinearity. The 

static force-deflection characteristic for the nonlinear oscillator is given by 

 
3 21

2 2 2
2

2 1 o
e a

l
f k x k x

x l

 
 

   
 
 

                                              (1) 

MOVIC2016 & RASD2016 IOP Publishing
Journal of Physics: Conference Series 744 (2016) 012076 doi:10.1088/1742-6596/744/1/012076

2



 

 

 

 

 

 

which for 0.2x l  can be approximated by 3

L Nf k x k x  , in which 
3 2( / 1)L o ak k l l k   , 

3( / )N o ak l l k , 
ol  is the initial length of the lateral springs and l  is their length when they are in the 

horizontal position. 

 

Figure 1  Schematic of the two-stage energy harvesting system. 

The dynamical equations of the system in Fig. 1 can be obtained from Newton’s second law and 

Kirchhoff’s second law. 
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For small displacements of the primary and secondary masses, the stiffness forces can be 

approximated by a third-order polynomial so that Eq. (2) can be reduced to two coupled Duffing 

equations, This is valid provided that displacement are such that  1 10.2x l and 2 20.2x l  [24, 25]. 

Eq. (2) can be approximated by two coupled Duffing equations, which can be written in non-

dimensional matrix form as 
 3
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The HBM can also be used here together with the assumption that the vector of non-dimensional 

displacements has the form 
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The resulting amplitude-frequency matrix equation can be obtained 
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For the closed electric circuit, the harvested power can be then obtained as 
2P                                                                       (6) 

3.  Results and discussion 

Fig. 2 shows the power amplitude-frequency response of the linear-nonlinear coupled energy harvester 

with the degree of nonlinearity changed by varying ˆ
ak . For the linear two-degree-of-freedom system, 

however, has an additional mass and stiffness, which results in an additional resonance frequency, two 

resonance peaks are self-contained as shown in Fig. 2(a). Nonlinearity of the system is increased, by 

increasing ˆ
ak , the two resonance curves are bending to the left as shown in Fig. 2(b). For the moderate 

levels of ˆ
ak , the two separate resonance are interacted with each other, and formed as an isolated 

bubble that could become larger as increasing ˆ
ak , as shown in Fig. 2(c) and (d). For the large levels of 

ˆ
ak , the bubble is broken-up, and the breach is larger as increasing ˆ

ak , as shown in Fig. 2(e) and (f). To 

check whether the Harmonic balance method correctly captures the dynamic behavior for the 

parameters chosen, the amplitude-frequency response for the power is plotted in Fig. 2 together with 

numerical results obtained by the fourth-order Runge-Kutta method. It can be seen that there is 

reasonable agreement and so the observations made concerning Fig. 2 can be considered to be valid. 
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(a)                                                         (b) 

 
(c)                                                           (d) 

 
(e)                                                          (f) 

Figure 2 The displacement amplitude-frequency response change with ˆ
hk  at damping 1 0.02  , 

2 0.01  ; mass ratio 1  ; ˆ 0.7l  ; stiffness ratio ˆ 1.2tk  , 1
ˆ 0.1vk  , 2

ˆ 1vk  ; (a)
 

ˆ 0hk   (b)
 

ˆ 0.2hk   

(c)
 

ˆ 0.4hk   (d)
 

ˆ 0.6hk   (e)
 

ˆ 0.8hk   (f) ˆ 1hk   [20-22].
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4.  Energy harvesting from random vibration 

The mechanism for bubble shaped response curves can be applied to the nonlinear electromagnet 

energy harvester to improve the performance when the energy harvester is subject to random 

excitation. The equation of motion of the bi-stable energy harvester subject to random base motion 

( )e ex t  in Fig.1, can be approximated by  

 

 

ind coil 2 0

el max

L I RI BL x

    


  

Mx Cx K x f f
                                                    (7) 

where, ( ) 0e t  , ( ) ( ) ( )e et t t D t     , D  is intensity of the noise,   is unit pulse function. 

As discussed above section, the analytical results and the conclusions based on harmonic balance 

method are only strictly applicable for periodic motion response. When the linear-nonlinear coupled 

mechanism shown in Fig. 1 is subject to random excitation which has Gaussian random 

characteristics, the Eqs. (5) and (6) cannot be used to evaluate the harvesting power. In this case, 

harvesting electric power is the measure used in the investigation, which is defined in terms of MS-

Mean Square of the electric current. 

  MSP I R                                                          (8) 

To determine the harvesting power of the systems for random base motion, the fourth-order Runge-

Kutta method was used to solve the equations of motion directly. At each concerning intensity of 

excitation the response was calculated numerically, and the MS of steady-state electric current 

response was used to plot the harvesting power, which is shown in Fig. 3 for linear-nonlinear coupled 

mechanism.
 

Fig. 3 shows the harvesting average power of the linear-nonlinear coupled energy harvester subject to 

random excitation which has Gaussian characteristic. For a noise excitation with small levels, (less 

than about 0.4), it can be seen that the average power is decreased as increasing nonlinearity of the 

system. The reason for this is that for the low levels of the excitation, the nonlinearity could not drive 

the resonance interaction, even the resonance curve bending; it is demonstrated that the stiffness 

nonlinearity has damping effecting that could reduce the resonance peak. Thus the average power is 

decreased as increasing nonlinearity of the system for the low levels of noise. For larger excitation 

levels (greater than about 0.4), average power is increased as increasing nonlinearity of the system. 

The roll-on rate is increased as the excitation level increasing for nonlinear systems, while the roll-on 

rate is kept the same for the linear system.  

 
Figure 3 Averaged power of the linear-nonlinear coupled energy harvester varying with intensity of 

noise D, with the same parameters as in Fig. 3; red solid point: linear one, black ‘+’:
 

ˆ 0.2hk  , blue 

‘×’:
 

ˆ 0.4hk   , green ‘□’: ˆ 0.6hk  , brown ‘o’:
 

ˆ 0.8hk  , purple ‘△’:
 

ˆ 1hk  . 
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5.  Conclusions 

This paper has investigated the way in which nonlinearity can be put to good use in an electromagnetic 

energy harvester. It is found that the broken of bubble shaped response curves has the effect that 

adding additional jumping frequency so that the harvesting frequency-band is extended. The Harmonic 

balance method has been used to analysis the power amplitude-frequency response of the system. The 

results have been also validated by some numerical work. Then the averaged power under Gaussian 

white noise has been calculated numerically, the results demonstrated that the effective of the resonance 

of linear-nonlinear coupled energy harvester is achieved. 
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