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Abstract. This paper is concerned with an advanced transfer trajectory planning method of
2-Dimensional transfer machine with vibrational element such as an overhead traveling crane.
In the 2-D transfer machine, it is required to reach the target position in a short time, avoid the
obstacles, and suppress the vibration. In recent years, the authors have proposed the trajectory
planning method using the optimization problem with considering input and state constraints
in the transfer system, obstacle avoidance and vibration suppression. However in the previous
approaches, it takes a long time to derive the reference trajectory because of many variables
in the optimization. Therefore in this study, we propose the fast solution for optimizing the
transfer trajectory by giving a feasible initial trajectory. And, it is discussed how to give the cost
function in the trajectory optimization with reducing the fluctuating cart motion. Moreover,
we discuss the practical case that the proposed approach is applied to the large transfer space.
The effectiveness of the proposed transfer trajectory planning method is verified by simulations
of the overhead traveling crane.

1. Introduction
In many industries, overhead traveling crane systems frequently have been used for efficiently
transporting heavy loads. In the overhead traveling crane, it is required to reach the target
position in a short time, avoid the obstacles, and suppress sway of the load [1]～[4].

In order to fulfill the above requirements, the transfer control systems have been proposed
in the previous studies. The vibration suppression control to load of the overhead crane using
optimal control theory was proposed in [5]. In the crane system with varying the rope length, the
load vibration with varying the natural frequency is suppressed by the gain scheduling control
[6], [7]. Furthermore, natural frequency elements of vibration are eliminated by shaping the
acceleration of the cart [8]. These control systems have specialized in the load sway suppression.
In the 2-D transfer systems such as the overhead traveling crane, a path planning considering
obstacle avoidance is required. In the studies of path planning, the path of transferred object has
been derived by the potential method [9], the probabilistic road map method [10], and predicting
the action of the moving obstacle [11]. In the study [12], the path in consideration of obstacles
avoidance is derived by the potential method. Then, the path is reshaped to the trajectory
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(a) Photo of laboratory-type
overhead traveling crane

(b) Illustration of load sway in
crane

Figure 1. Overhead traveling crane system

with vibration suppression. In this approach, the reshaped trajectory is different from the path
for avoiding the obstacle derived by the potential method. Therefore, the transfer object is in
danger of collision with obstacles.

In recent years, the trajectory planning methods in consideration of input and state
constraints in the transfer system, suppressing the load sway with varying the rope length,
and the obstacles avoidance in the transfer space have been proposed by authors [13], [14].
In these approaches, the trajectory planning problem is formulated as the quadratic problem
with quadratic constraints in the optimization problem. Thus, the trajectory is optimized by a
sequential quadratic programming approach.

However in the previous approaches, it takes a long time to derive the reference trajectory
because of many variables in the optimization. Therefore in this study, we propose the fast
solution for optimizing the transfer trajectory by giving a feasible initial trajectory to the
trajectory optimization. And, it is discussed how to give the cost function in the trajectory
optimization with reducing the fluctuating cart motion. Moreover, we discuss the practical
case that the proposed approach is applied to the large transfer space. The effectiveness of the
proposed transfer trajectory planning method is verified by simulations of the overhead traveling
crane.

2. Model of overhead traveling crane system
In this study, the proposed control system is applied to the overhead traveling crane system as
one of the 2-D transfer system with vibrational element. The overhead traveling crane used in
this study is shown in Figure 1(a). And, schematic illustration of the load sway is shown in
Figure 1(b). Specifications of the overhead traveling crane in Figure 1(a) are shown in Table 1.
The model of load sway dynamics is linearized as θ ≪ 1, ϕ ≪ 1, and it is represented as{

ml2θ̈ +mglθ = mlay,

ml2ϕ̈+mglϕ = −mlax,
(1)

where m is mass of the load, g is a gravity acceleration, l is the rope length, and θ and ϕ are the
load sway angles, ax and ay are acceleration of the cart transfer of each axis. The cart transfer
system consists of the position feedback control system. The feedback controllers on x- and
y-axes have the proportional gain. The cart transfer systems on x- and y-axes are represented
as
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Table 1. Specifications of crane system shown in Figure 1(a)

Maximum Transfer Distance on x-axis 1.050[m]

Maximum Transfer Distance on y-axis 0.400[m]

Maximum Rope Length 0.60[m]

Limitations of Velocities on x-and y-axes ± 0.22[m/s]

Limitations of Hoisting Velocity ± 0.5[m/s]

Limitations of Accelerations on x- and y-axes ± 0.5[m/s2]

Limitations of Hoisting Acceleration ± 1.0[m/s2]

Limitation of Control Input Voltage ± 10[V]

{
ẍcm = − 1

Tm
ẋcm + Km

Tm
um,

um = Kpm(rm − xcm), (m = x, y),
(2)

where xcm, um and rm are the cart position, the control input, and the reference trajectory of
each axis, respectively. Tm and Km are the time constant and the gain in the motor of each axis,
respectively. Kpm is the proportional gain in the position feedback controller of each axis. In this
study, the time constant and the gain in each motor can be obtained as Tx=0.008[s], Ty=0.036[s]
andKx=Ky=0.037[m/s/V] by the parameter identification, respectively. The proportional gains
are given as Kpx=Kpy=100.

3. Transfer trajectory planning method
The transfer trajectory planning method using optimization method has been proposed in the
author’s studies [13], [14]. The detailed derivation of the method is referred to in [13], [14].

3.1. Representation of controlled object
In this study, the cart motion with input and state constraints as shown in Figure 2 can be
controlled according to the trajectory planning. Therefore, the cart motion as the controlled
object is represented as

xm(k + 1) = Aclmxdm(k) +Bclmrm(k),
zm(k) = Czclmxdm(k) +Dzclmrm(k),
zum(k) = Cuclmxdm(k) +Duclmrm(k),
ym(k) = Cyclmxdm(k) +Dyclmrm(k), (m = x, y),

(3)

where xdm is the state variable vector, zm is the controlled variable vector. The vector zm
consists of the cart position, velocity and acceleration, zum is the control input, ym is the cart
position as the observed variable.

In order to formulate the trajectory planning to optimization problem, the cart motion is
represented with the discrete-time system as t = k∆T . Here, t is the time, ∆T is the sampling
time and k is the sample number. As shown in Figure 2, the control input zum and the controlled
variables zm are subject to the input and state constraints.
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Figure 2. Cart transfer system as controlled object on an axis

3.2. Cost function
The cost function is defined for the transfer trajectory optimization. The transfer trajectory
derived by the previous approaches [13], [14] has the fluctuating motion. Because, the energy
saving is not considered in the cost function. In order to reduce the fluctuating motion, the cost
function with energy saving is proposed as

min
rx,ry

J = w1(
N−1∑
k=0

| r0x(k)− x(k) |2 +
N−1∑
k=0

| r0y(k)− y(k) |2)

+ w2(
N−1∑
k=0

| zux(k) |2 +
N−1∑
k=0

| zuy(k) |2)

+ w3(

∫ v2

v1
| zux(v) |2 dv +

∫ v2

v1
| zuy(v) |2 dv), (4)

where r0x and r0y are the target positions on x- and y - axes, respectively. v is the frequency.
v1 and v2 are the minimum and maximum frequencies. And, w1 ≥ 0, w2 ≥ 0 and w3 ≥ 0 are
the weight coefficients.

Here, the vectors of the input and controlled variables are respectively defined as

Zum = [zum(0) zum(1) · · · zum(N − 1)]T ,

Zm = [zm(0) zm(1) · · · zm(N − 1)]T , (m = x, y). (5)

We also define vectors Rm, R0m and Ym (m = x, y) whose elements are rm(k), r0m(k) and
ym(k), (k = 0, 1, · · · , n − 1), respectively. Therefore, the control input and the controlled and
observation variables can be compactly expressed as

Zm = MzmRm, Ym = MymRm, (m = x, y), (6)

where Mzm and Mym are given by

Mzm =


Dzclm 0 · · · 0

CzclmBclm Dzclm · · ·
...

...
...

. . . 0
CyclmAn−2

clm · · · CzclmBclm Dzclm

 , (7)

Mym =


Dyclm 0 · · · 0

CyclmBclm Dyclm · · ·
...

...
...

. . . 0
CyclmAn−2

clm · · · CyclmBclm Dyclm

 , (m = x, y). (8)
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Excluding the weight coefficient w1, the first term J1 and second term J2 in the cost function
(4) becomes

J12 = (RT
xM

T
yxMyxRx − 2RT

xM
T
yxR0x) + (RT

y M
T
yyMyyRy − 2RT

y M
T
yyR0y), (9)

where since RT
0xR0x and RT

0yR0y are constants, they have been omitted from the cost function.
We also express the third term J3 and fourth term J4 in the cost function (4) without the weight
coefficient w2 to the matrix representation as

J34 = (RT
xM

T
zuxMzuxRx) + (RT

y M
T
zuyMzuyRy). (10)

Excluding the weight coefficient w3, the fifth term J5 in the cost function (4) can be discrete
Fourier transformed as

J5 =

∫ v2

v1
| zux(v) |2 dv =

∫ v2

v1
|
N−1∑
k=0

zux(k)e
−jv∆Tk|2dv

=

∫ v2

v1

N−1∑
k=0

zux(k)e
−jv∆Tk ∗

N−1∑
k=0

ejv∆Tkzux(k)dv. (11)

The sixth term J6 in the cost function (4) can be represented similarly to J5. Therefore, the
matrix representation of fifth term J5 and sixth term J6 in the cost function (4) can be expressed
as

J56 = RT
xM

T
zuxM eMzuxRx +RT

y M
T
zuyM eMzuyRy, (12)

where M e is given by

M e =


v2 − v1

sin v2∆T−sin v1∆T
∆T

sin v2∆T−sin v1∆T
∆T v2 − v1
...

. . .
sin v2∆T (N−1)−sin v1∆T (N−1)

∆T (N−1) · · ·

· · · sin v2∆T (N−1)−sin v1∆T (N−1)
∆T (N−1)

. . .
...

. . . sin v2∆T−sin v1∆T
∆T

sin v2∆T−sin v1∆T
∆T v2 − v1

 . (13)

Collecting (9), (10) and (12), the cost function (4) becomes

min
Rx,Ry

J = min
Rx,Ry

(w1J12 + w2J34 + w3J56)

= min
Rx,Ry

(−2w1(R
T
xM

T
yxR0x +RT

y M
T
yyR0y)

+ RT
x (w1M

T
yxMyx + w2M

T
zuxMzux + w3M

T
zuxM eMzux)Rx

+ RT
y (w1M

T
yyMyy + w2M

T
zuyMzuy + w3M

T
zuyM eMzuy)Ry. (14)
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Figure 3. Trajectory planning with obstacle avoidance

3.3. Input and state constraints on the transfer system
The input and state constraints on the transfer system can be expressed into the matrix
representation as

|MzxmRm| ≤ Zxmc, |MzumRm| ≤ Zumc, (m = x, y), (15)

where Zxmc and Zumc are the input and state constraints, respectively given by

Zxmc =
[
zmc · · · zmc

]T
, Zumc =

[
zumc · · · zumc

]T , (m = x, y), (16)

where zmc and zumc are the boundary parameters of the constraints.
In this study, the trajectory is planned over a finite time interval. To transfer the object to

the goal position (r0x, r0y) and ensure it is stationary at the final time, we impose the following
equality constraints.

MfmRm = Zfm, (m = x, y), (17)

where Mfm and Zfm are given by

Mfm =

[
CyclmAN−2

clm Bclm · · · CyclmBclm Dyclm

CzclmAN−2
clm Bclm · · · CzclmBclm Dzclm

]
, Zfm =

[
r0m
0

]
, (m = x, y). (18)

3.4. Positional constraints on obstacle avoidance
In the 2-D transfer, it is necessary to avoid obstacles in the transfer space. The obstacle is
defined as the ellipsoidal no-penetration area as shown in Figure 3. The interior of the ellipse is
the no-penetration area that must be avoided in trajectory planning. Therefore, we impose the
following inequality constraint on the position of the transferred object.

(x− x0)
2

a2r
+

(y − y0)
2

b2r
− 1 ≥ 0, (19)

where (x0, y0) is the center of the ellipse. ar and br are respectively the lengths of axes of the
ellipsoidal no-penetration area, and are given as

ar = a+ r, br = b+ r, (20)

MOVIC2016 & RASD2016 IOP Publishing
Journal of Physics: Conference Series 744 (2016) 012070 doi:10.1088/1742-6596/744/1/012070

6



where a and b are the corresponding axis lengths of the ellipse enclosing the obstacle. And, r is
represented as

r = re + dmax, (21)

where re is the radius of the circle enclosing the transferred object. dmax is the maximum
moving distance of the transferred object which is caused by leaned the rope due to inertia. The
maximum rope angle ϕmax leaned by inertia can be derived from (1) as

ϕmax =
|ax|max

g
, (22)

where |ax|max is the maximum acceleration of cart transfer. Therefore, the maximum moving
distance dmax can be represented as

dmax =
lmax|ax|max

g
, (23)

where lmax is the maximum rope length.
The matrix representation of the inequality (19) can be represented as

RT
x (

1

a2r
MT

yxEMyx)Rx +RT
y (

1

b2r
MT

yyEMyy)Ry − (
2

a2r
XT

0 EMyx)Rx − (
2

b2r
Y T
0 EMyy)Ry

+
1

a2r
XT

0 EX0 +
1

b2r
Y T
0 EY0 − η ≥ 0 (24)

where E = [eT1 e1 · · · eTk ek · · · eTnen]T , η = [e1e
T
1 · · · ekeTk · · · eneTn ]T , e1 = [1, 0, 0, 0, · · · , 0] ∈ R1×n,

ei = [0, · · · , 0, 1, 0, · · · , 0] ∈ R1×n, X0 = [x0, x0, · · · , x0]T ∈ R1×n and Y0 = [y0, y0, · · · , y0]T ∈
R1×n.

By (14), (15) and (24), The trajectory planning of the overhead traveling crane can be resulted
to quadratic programming problem with quadratic constraints. This quadratic programming
problem is solved by a sequential quadratic programming method.

4. Fast solution by using feasible initial trajectory
The transfer trajectory can be obtained by the optimization problem introduced in the previous
section. However, it takes a long time to derive the optimized trajectory because of many
variables in the optimization. In the previous study [14], the initial trajectory Rini ∈ R1×n in
the optimization has been given as

Rinim = [r0m, r0m, · · · , r0m], (m = x, y) (25)

where r0m is the target position. Thus, the initial trajectory is no-feasible solution to be subject
to (15), (17) and (24). In this case, it takes a long time to obtain the optimized trajectory. By
giving the feasible initial trajectory to the optimization problem, the optimizing time can be
shortened. The feasible initial trajectory is designed while satisfying the constraint conditions
defined by (15), (17) and (24). And, the feasible initial trajectory is designed based on the
designer’s subjective view.

As an example, the feasible initial trajectory is shown in Figure 4 and Figure 5. Figure 4(a)
and (b) show the time series of feasible initial trajectory on x- and y-axes, respectively. Figure
5 shown the designed feasible initial trajectory on the transfer space. In the transfer space, the
target position is located at (x, y) = (1.0, 0.4)[m]. The constraints conditions of transfer velocity,
acceleration and control input are given from the specifications of the overhead traveling crane
as shown in Table 1.
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Figure 4. Time series of feasible initial trajectory
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Figure 5. Feasible initial trajectory on transfer space

The center of obstacle is located at (x, y) = (0.5, 0.15) and the size of obstacle is
H0.24 × W0.1[m]. Therefore, the major and minor axes of the ellipse enclosing the obstacle
are a = 0.170[m] and b = 0.071[m], respectively. The maximum rope length in the overhead
traveling crane is lmax = 0.6[m], and the maximum acceleration is amax = 0.5[m/s2]. Thus,
the maximum moving distance by leaned the rope due to inertia is obtained as dmax=0.03[m]
by (23). The radius of the circle enclosing the transfer object is re=0.01[m]. From (20) and
(21), the lengths of axes of the ellipsoidal no-penetration area is obtained as ar=0.210[m] and
br=0.111[m].

The feasible initial trajectory shown in Figure 4 and Figure 5 is given to the trajectory
optimization.

5. Simulation Verification
In this study, the fast solution of trajectory optimization by using the feasible initial trajectory
and the cost function with the energy saving for reducing the fluctuating motion of the cart are
proposed. The proposed approaches are verified by simulation of the overhead traveling crane
system which has the specifications as shown in Table 1. The transfer space with obstacle is
shown in Figure 5, and the feasible initial trajectory shown in Figure 5 is given to the trajectory
optimization in the simulation verification. The range of the rope length while transferring the
cart is between 0.3[m] and 0.6[m]. Therefore, the natural angular frequency of the load vibration
is varied between 4.04[rad/s] and 5.72[rad/s]. The frequency band for vibration suppression in
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Figure 6. Time series in simulation results
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Table 2. Optimizing time of proposed fast solution and conventional

Computation time [s]

Proposed solution 111

Conventional solution 582

the cost function (4) is set to the range from 3.5[rad/s] to 6.0[rad/s]. The transfer time is given
as 5.5[s], and the sampling time is as ∆T=0.1[s].

The weight coefficients in the proposed cost function are given as w1=10, w2=0.1 and w3=1.
The trajectory optimization with the proposed cost function is performed by using the proposed
fast solution. As the comparisons, the weight coefficients, which are same as the cost function
in [14], are given as w1=10, w2=0 and w3=1. And, the trajectory is optimized using the
conventional initial trajectory which has the same elements as the target position r0. Moreover,
the trajectory is optimized using the cost function with the weight coefficients, w1=10, w2=0.1,
w3=0, which the vibration suppression is not considered in the trajectory optimization.

The simulation results are shown in Figure 6 to Figure 10. Figure 6(a) and (b) show the time
series of the cart transfer on x- and y-axes in simulation, respectively. In Figure 6, the upper left
graphs show the acceleration of cart transfer, and the upper right graphs show the velocity. The
lower left and lower right graphs show the cart position and control input, respectively. The solid
line are the simulation results of the proposed approach, the broken lines are the conventional
approach and the chain lines are the trajectory without vibration suppression. Figure 7 shows
the cart trajectory in the transfer space. Figure 8(a) and (b) show the power spectrum of the
acceleration of the cart transfer on x- and y-axes, respectively. The line types in Figure 8 are
same as those in Figure 6. Figure 9 show the swaying angle of the rope whose length is l=0.3[m].
Figure 10 show the swaying angle of the rope whose length is l=0.6[m]. In Figure 9 and Figure
10, (a) and (b) show the simulation results on x- and y-axes, respectively. The line types in
Figure 9 and Figure 10 are same as those in Figure 6. As seen from these simulation results, the
load swaying can be suppression by the proposed approach, and the load is transferred in a short
time while avoiding the obstacle and satisfying the constraints in the crane system. Moreover,
fluctuating motion of the cart can be reduced by applying the proposed cost function.

Table 2 shows the calculating time of the trajectory optimization in the proposed fast solution
and the conventional solution. By using the proposed fast solution, the trajectory can be
optimized in a short time.

6. Application to the large transfer space
The proposed approach is applied to the large transfer space. Here, the simulation conditions
of the transfer trajectory are shown as follows.
・Target position is located at (x, y) = (2.0, 0.8)[m].
・Constraints of transfer cart are shown in the specifications in Table 1.
・The range of the rope length while transferring the cart is between 0.3[m] and 0.6[m]. Therefore,
the natural angular frequency of the load vibration is varied between 4.04[rad/s] and 5.72[rad/s].
The frequency band for suppressing the vibration is set to the range between 3.5[rad/s] and
6.0[rad/s] in the trajectory planning of the cart transfer on x- and y-axes.
・The centers of obstacles are located at (x, y) = (0.5, 0.6), (0.9,0.35) and (1.4,0.65). 3 obstacles
has same size. Therefore, the major and minor axes of the ellipse enclosing the obstacle are
a = 0.170[m] and b = 0.071[m], respectively. The maximum moving distance by leaned the rope
due to inertia is obtained as dmax=0.03[m]. The radius of the circle enclosing the transfer object
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Figure 11. Time series in simulation results
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Figure 14. Simulation results of
swaying angle, l=0.3[m]
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Figure 15. Simulation results of
swaying angle, l= 0.6[m]
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is re=0.01[m]. Therefore, the lengths of axes of the ellipsoidal no-penetration area is obtained
as ar=0.210[m] and br=0.111[m].
・The weight coefficients are given as w1 = 5, w2 = 0.2, w3 = 1.
・Simulation time is given as 10.0[s] and sampling time is given as ∆T=0.1[s].

The simulation results are shown in Figure 11 to Figure 15. The layouts of the figures and
the line types are same as those of Figure 6 to Figure 10. As the results, the cart is transferred
in a short time by the proposed approach, even if the transfer space is expanded. And, the load
sway can be suppressed. The calculation time of the trajectory optimization is 2224[s]. The
calculation time can be increased with expanding the transfer space.

7. Conclusions
We proposed transfer trajectory planning method of 2-D transfer machine with vibrational
elements such as an overhead traveling crane. In this study, we especially proposed the fast
solution for optimizing the transfer trajectory by giving a feasible initial trajectory. And, the
cost function with energy saving was proposed for reducing the fluctuating motion of the cart.
The effectiveness of the proposed transfer trajectory planning method is verified by simulations
of the overhead traveling crane. The computation time of the proposed trajectory optimization is
faster than that of the conventional approach. In the future works, the experimental verification
using the actual crane system should be confirmed for usefulness of the proposed method, and
it will be required to develop the fast solution of the trajectory optimization for large transfer
space.
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