
Damping Performance of Taut Cables with Passive Absorbers 

Incorporating Inerters 

Jiannan Luo, Jason Zheng Jiang and John H G Macdonald 

Faculty of Engineering, University of Bristol. 

Abstract. As stay cables are prone to vibrations due to their low inherent damping, a common method 

to limit unwanted vibrations is to install a viscous damper normal to the cable near one of its supports. 

This paper investigates the potential performance improvement that can be delivered by a numbers of 

candidate absorbers that incorporate inerters. The inerter device is the true network dual of a spring, 

with the property that the force is proportional to the relative acceleration between its two terminals. A 

finite element taut cable model is used for this study. A specific cost function indicating the damping 

performance of a cable with an absorber attached is proposed. An optimisation of the performance is 

then carried out. Based on optimisation results, the best damping performance for each of the candidate 

absorber structures against a specific range of inertance values is presented. 
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1. Introduction 

Stay cables are widely used in cable stayed bridges and other civil engineering structures in order to 

carry static loads. It is important for cables to ensure the safety of the entire structure [1]. However, 

resonance of cables will cause large amplitude vibrations due to their low inherent damping. Typically, 

the inherent damping ratio of cables on suspension bridges is about 0.1% [2]. So, unless suppressed, 

either direct load on cables from environment or minor motion at the cable supporting ends will cause 

vibrations [3]. But, only modes with low natural frequency, typically the first six modes of the cable 

are being considered as they typically experience more severe vibrations than high natural frequency 

modes [4].  

 

Several studies have been made in order to understand the dynamic behaviour of taut cables and their 

vibration behaver using viscous damper. Irvine and Caughey [5] developed a linear theory for the free 

vibration of uniform suspended cable. Yoneda & Maeda [6] proposed the use of a set of empirical 

equations for defining the optimum damper size. Later, Pacheco et al. [1] determined the universal curve 

for estimating the modal damping of stay cables and Krenk [7] gave an analytical formula for the 

universal curve, based on complex modes analysis. More recently, Main and Jones [8] extended these 

studies to the case when the presence of linear viscous dampers induces large shifts of the cable natural 

frequency. 

 

In order to limit unwanted vibrations on cables, viscous dampers and tuned mass dampers (TMDs) have 

been used in practice. For both structures, the optimum damping ratio for a certain mode is larger if the 

damper located closer to the antinode of that mode [6]. Viscous dampers are normally installed normal 

to the cable, for ease of manufacture and maintenance, they should be located close to the supporting 

end to the deck, usually less than 5% of the way alone the cable [4]. However, being close to the cable 

end, a viscous damper may not be effective enough for vibration suppression of multiple modes. The 

TMD structure is more effective and it can be located at any position along the cable. However, it needs 
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a relatively heavy secondary mass to be beneficial for multiple modes, and for maintenance it is 

undesirable for it to be too high on the cable [10].  

 

This paper investigates the performance of several inerter combined vibration absorbers. The inerter 

was proposed as an ideal two terminal mechanical element, in which the applied force is proportional 

to the relative acceleration between its two terminals. By using the force-current analogy, mechanical 

circuits can be translated to classical electrical circuits in a completely analogous way [11]. Research 

has been carried out to introduce this new device into traditional vibration suppression systems. Recent 

results show that inerter combined structures can effectively improve the performance of vehicle 

suspensions [12], motorcycle suspensions [13], train suspensions [14][15], and building structures 

[16][17]. For vibration suppression on cables, a methodology has proposed to obtain the optimum 

damping ratio for a tuned inerter damper (TID) system [18].  

 

The aim of this paper is to systematically study the optimum critical damping ratios that can be achieved 

by absorber structures incorporating inerters, which is organised as follows. Firstly, a finite element 

model of the cable is built in order to study the behaviour of the cable with different absorber structures. 

Then, the performance of a viscous damper and three other candidate absorber structures incorporating 

inerters has been studied. Finally, based on the optimisation results, the damping performance of each 

configuration are compared and assessed accordingly.  

2. Mathematical Approach 

In this section, a finite element cable model is introduced firstly. Then, four candidate absorber 

structures and the optimisation criterion for damping performance are discussed. 

2.1. Mathematical model of a cable including an absorber 

The mathematical model of the cable is modelled by the finite element algorithm, which is considered 

as a system modelled with lump mass elements with negligible flexural stiffness. The tension force 

alone the cable is denoted as 𝑇, the total mass of the cable is 𝑀, the total span length of the cable is 𝐿. 

The effect of inclination and sag of the cable are neglected as well as cable’s out-of-plane motion and 

elasticity. For a cable with 𝑛 degrees of freedom (DOF), there are all together 𝑛 + 2 masses, 𝑛 masses 

𝑚, are spread alone the cable, two masses, 𝑚/2, are connected directly to the supporting ends. Hence, 

𝑚 = 𝑀/(𝑛 + 1). The masses divide the cable into 𝑛 + 1 lengths 𝑙 = 𝐿/(𝑛 + 1). The 𝑎𝑡ℎ mass has an 

associated vertical position 𝑥𝑎(𝑡) simplified as 𝑥𝑎, which is zero at equilibrium. Since the end masses 

are connected directly to the supports, 𝑥0   and 𝑥𝑛+1  are considered identically equal to zero. An 

example of a taut cable model with five DOF is shown in Figure 1. 

 

 
 

Figure 1. Finite element simulation model of a taut cable (with five DOF) 

 

For a vibrating cable model with 𝑛 DOF, the displacement of the masses from their vertical equilibrium 

positions lead to an angle 𝜃𝑎 between mass 𝑎 + 1 and mass 𝑎. As vertical displacements are relatively 

small compared to the element length 𝐿/(𝑛 + 1), the angle 𝜃𝑎 can be presented by  

𝜃𝑎 = arcsin(
𝑥𝑎+1−𝑥𝑎

𝐿/(𝑛+1)
) . (1) 

The equation of motion for mass 𝑎 without any external force can be expressed as  

𝑚𝑥̈𝑎 = 𝑇sin(𝜃𝑎) − 𝑇sin(𝜃𝑎−1) . (2) 
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According to Mersenne's laws, the fundamental frequency of the undamped cable can be calculated as 

𝑓𝑜 = 0.5𝐿 · (𝑇/𝑢)0.5, where 𝑢 is the mass per unit length. Therefore, the natural circular frequency of 

mode 1 of the undamped cable is can be expressed as  

𝜔𝑜 = 𝜋 · (𝑇/𝑀𝐿)0.5 (3) 

 

By substituting Equation (1) and (3) into (2), Equation (4) can be obtained. 

1

𝑛+1
𝑥̈𝑎𝑓

= (𝑛 + 1) · (
𝜔𝑜

𝜋
)

2
· (𝑥𝑎𝑓+1 − 2𝑥𝑎𝑓

+ 𝑥𝑎𝑓−1) . (4) 

Similarly, the equation of motion for mass 𝑎𝑓  of a cable is expressed as Equation (5), at which an 

external force 𝐹(𝑡) is provided by an absorber.  

 

𝑚𝑥̈𝑎 = 𝑇sin(𝜃𝑎) − 𝑇sin(𝜃𝑎−1) + 𝐹(𝑡) . (5) 

By substituting Equation (1) and (3) into (5), Equation (6) can be obtained. 

1

𝑛+1
𝑥̈𝑎𝑓

= (𝑛 + 1) · (
𝜔𝑜

𝜋
)

2
· (𝑥𝑎𝑓−1 − 2𝑥𝑎𝑓

+ 𝑥𝑎𝑓+1) +
𝐹(𝑡)

𝑀
 . (6) 

By rearranging the vertical position, speed and acceleration of each mass unit into vectors in the format 

of 𝒙 = [𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛]𝑇, Equations (4) and (6) can be rearranged into matrix format with matrices 𝐌, 

𝐂 and 𝐊, i.e. 

𝐌𝒙̈ + 𝐂𝒙̇ + 𝐊𝒙 = 𝟎 . (7) 

By taking Laplace transformation for both sides, Equation (7) can be expressed as (8) 

𝐌𝑠2𝒙̃ + 𝐂𝑠𝒙̃ + 𝐊𝒙̃ = 𝟎 . (8) 

In Equation (8), matrices 𝐌, 𝐂 and 𝐊 are respectively represented by Equations (9)-(11), in which 𝛿𝑖𝑗 

is the Kronecker delta function. 𝑌(𝑠) represents the admittance function of the absorber. The admittance 

in mechanical is define to be the ratio of the force to velocity, which agrees with the usual electrical 

terminology [11]. In this study, 𝑌(𝑠) = 𝐹̃(𝑠)/[𝑠 · 𝑥̃𝑎𝑓
(𝑠)], assuming that one end of the absorber 

connected to mass 𝑎, while the other end of the absorber is attached to a fixed support. 

𝐌𝑖𝑗 =
1

𝑛+1
𝛿𝑖𝑗 , (9) 

𝐂𝑖𝑗 = 0, except 𝐂𝑎𝑓𝑎𝑓
= −𝑌(𝑠) , (10) 

𝐊𝑖𝑗 = (𝑛 + 1) · (
𝜔𝑜

𝜋
)2 · (2 𝛿𝑖𝑗 − 𝛿𝑖(𝑗+1) − 𝛿𝑖(𝑗−1)) . (11) 

With matrices 𝐌, 𝐂 and 𝐊 as input, a set of complex eigenvalues of the system can be calculated via 

Equation (12), where 𝛌 = [λ1, λ2, λ3, … , λ𝑛], 𝟎 is a square null matrix of size 𝑛, 𝐈 is a unit matrix of size 

𝑛. 

[𝛌 𝛌∗𝑇]𝑇 is a vector of size 2𝑛, which provides a set of complex eigenvalues which are in 𝑛 complex 

conjugate pairs. Either eigenvalue λ𝑒 or its complex conjugate eigenvalue λ𝑒
∗
 can be used to calculating 

damping ratio 𝜁𝑒 and natural frequency 𝜔𝑒 of mode 𝑒 of the damped cable, respectively expressed by 

Equations (13) and (14). 

𝜁𝑒 = |Re(λ𝑒)/Im(λ𝑒)| , (13) 

𝜔𝑒 = |Im(λ𝑒)| . (14) 

In principle, in order to reduce the error due to finite-series approximation, the number of DOF 𝑛 should 

be as large as possible. However, in order to limit the computational time, 𝑛 is selected to be 19 for this 

study. 

[𝛌 𝛌∗𝑇]𝑇 = eig [
𝟎 𝐈

−𝐌−1𝐊 −𝐌−1𝐂
] . (12) 
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2.2. Candidate absorber structures and optimisation criterion 

The four candidate absorber structures are shown in Figure 2, where one terminal of the structure is 

connected to the cable at mass 𝑎𝑓 and the other is attached to a fixed support. Structure I represents a 

traditional viscous damper. Structure II and III comprise a damper and inerter in parallel and in series 

respectively. Structure IV is the same as the TID structure introduced in reference [18], which is similar 

to the TMD structure except that the inerter is applied rather a mass unit.  

 

 

I) Damper only II) Damper and inerter 

parallel 

III) Damper and inerter 

series 

IV) TID structure 

    

    
 

Figure 2. Structure of four candidate absorbers 

 

For a taut cable with an attached absorber, if vibration energy can be effectively transferred and 

dissipated, the cable vibration will be effectively reduced. Therefore, damping ratio 𝜁 is selected to be 

the key parameter to judge the effectiveness of the absorber. Here, the elements in the four candidate 

absorbers are considered to be ideal, so the admittance function of the absorber 𝑌(𝑠) contains the 

parameters of damping coefficient 𝑐, inertance 𝑏 and stiffness 𝑘.  

 

For simplicity, the parameters of the system are presented in non-dimensional form as 𝑐’ = (𝑐/𝑀)/𝜔0, 

𝑏’ = 𝑏/𝑀 and  𝑘’ = (𝑘/𝑀)/𝜔0
2
. Similarly, the damped natural frequency 𝜔 and the location of the 

absorber 𝑎𝑓  are also presented in non-dimensional form as  𝜔’ = 𝜔/𝜔𝑜  and 𝑎𝑓’ = 𝑎𝑓/𝑛 . The 

admittance function of the four candidate absorbers are 𝑌1(𝑠) = 𝑐, 𝑌2(𝑠) = 𝑏𝑠 + 𝑐, 𝑌3(𝑠) = 1/(
1

𝑐
+

1

𝑏𝑠
), 𝑌4(𝑠) = 1/(

1

𝑐+𝑘/𝑠
+

1

𝑏𝑠
), repectively. 

 

Previous studies show that structure I and Structure IV are more efficient for a particular mode if they 

are located close to the anti-node point of that mode [4][7]. The location of the absorber relative to the 

total length of the cable, which presented as 𝑎𝑓’ should be large enough for optimising the damping 

ratio for low natural frequency modes. However, for all four candidates, in reality 𝑎𝑓’ = 5% should be 

the maximum ratio due to installation and maintenance problem. Therefore, to be comparable, the 

location 𝑎𝑓’ is set to be 5% for all four candidate absorber structures presented in this study. 

 

If sag and other minor effects are neglected, the vibration mode with the lowest natural frequency will 

be the most severe case among all modes. However, in some cases, adding absorbers may lead to 

significant changes of natural frequency or extra modes being introduced. These may cause the natural 

frequencies of some modes to be close to or even lower than the natural frequency of origin undamped 

mode 1. In this study, a frequency range of 0~1.5𝜔𝑜 is selected in order to cover the damped natural 

frequency of mode 1 and other low natural frequency modes caused by the factors mentioned above.  
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For optimisation, the effectiveness of the absorber is judged by the critical damping ratio 𝜁𝑐, which is 

defined as the lowest damping ratio among all modes with natural frequencies in the range of 0~1.5𝜔𝑜. 

The optimum critical damping ratio for the cable with each structure is calculated via a Matlab script 

using the non-linear optimisation algorithm called ‘fminsearch’ [19].  

 

For Structure I, the non-dimensional damping coefficient 𝑐’ is searched for the 𝑐’ value which provides 

the optimum critical damping ratio 𝜁𝑐. This result is compared with previous research and taken as a 

reference with which to compare with other structures. For Structures II, III and IV, inerters with 𝑏’ 
ranged from 0 to 2.5 are used for optimisation. For each given 𝑏’, rest parameter values in the structures 

are searched to optimize the critical damping ratio 𝜁𝑐 . The mode(s) which contain the all critical 

damping ratios is defined as the critical damping mode. 

3. Optimum performance for candidate absorber structures 

In this section, the optimum critical damping ratios for all four candidate structures are calculated and 

compared accordingly. Figures are drawn to show the optimum critical damping ratios 𝜁  and their 

corresponding non-dimensional natural frequencies 𝜔’. 

3.1. Optimum results for Structure I  

A viscous damper, i.e. Structure I, is a suitable structure to supress cable vibrations, which has been 

thoroughly studied. Several researchers have provided different methods in order to understand the 

resulting dynamic behaviour for a viscous damper attached to a cable. Their results provide the 

relationship between the damping ratio  𝜁  and the system parameters namely the non-dimensional 

damping coefficient 𝑐’, the relative location of the absorber 𝑎𝑓’ and the mode number 𝑒. According to 

their research, the optimum damping ratio for each mode of the cable is approximately 𝜁 = 0.5 · 𝑎𝑓’, 

which shows that the optimum performance of viscous dampers is limited by their location relative to 

the support. 

 

According to the optimisation approach introduced in Section 2, the modes with natural frequencies in 

the range 0~1.5𝜔𝑜 are considered. As shown in Figure 3(b) only one mode is inside that frequency 

range for a cable with Structure I. The optimum critical damping ratio 𝜁𝑐  provided by the viscous 

damper corresponding to a natural frequency in the range is 𝜁𝑐 = 0.0264 when 𝑐’ = 6.441, as shown 

in Figure 3(a). This is consistent with the result of previous studies [1][7].  

 

a)  b)  

 

Figure 3. Results for Structure I with varying 𝑐’ for 𝑎𝑓’ = 0.05. (a) Damping ratio versus damping 

coefficient of the damper. (b) Corresponding non-dimensional natural frequency. 

3.2. Optimum results for Structure II  

The optimum results for a range of values of the non-dimensional inertance 𝑏’ for cable with Structure 

II are shown in Figure 4. For 𝑏’ = 0, the solution is the same as the optimum solution in Figure 3. It can 
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be seen that for 𝑏’ > 0, Structure II can provide better optimum critical damping ratio 𝜁𝑐 than that of a 

viscous damper for any inertance 𝑏’ used in the present simulation cases.  

 

In Figure 4(a), the blue solid curve indicates the critical mode, which is composed of the optimised 

critical damping ratios 𝜁𝑐 for each given inertance 𝑏’. The green dashed curve shows the solution for a 

simultaneously-occurring mode with a natural frequency in the range of 0~1.5𝜔𝑜 which is non-critical. 

The corresponding frequencies of both modes are shown in Figure 4(b). The line styles are consistent 

for Figure (5-7) with those used in Figure 4.  

 

a)  b)  

 

Figure 4. Optimisation results for Structure II with varying 𝑏’ for 𝑎𝑓’ = 0.05. (a) Damping ratio versus 

non-dimensional inertance of the damper. (b) Corresponding non-dimensional natural frequency. 

 

It can be seen from the blue solid curve in Figure 4(a) that among all the optimised results with varying 

𝑏’, Structure II can provide maximum optimum critical damping ratio of 𝜁𝑐 = 0.156 for 𝑏’ = 1.855. 

This is 5.9 times of that from a viscous damper only (Figure 3(a)). It can be seen in Figure 4(b) that the 

natural frequency of the critical mode is similar to that of the original undamped mode 1. At 𝑏’ = 1.855 

the solutions for the critical and the non-critical modes cross over each other, which leads to the 

breakpoint in Figure 4(a).  

3.3. Optimum results for Structure III 

Figure 5 shows the optimum result for Structure III for a range of values of the non-dimensional 

inertance. It can be seen that the result are at a similar from to those for Structure II. Structure III is 

hence another beneficial structure compared with a viscous damper only if non-dimensional inertance 

𝑏’ is large enough. It can be seen in Figure 5(a) that among all the optimised results with varying 𝑏’, the 

absorber of Structure III can provide maximum optimum critical damping ratio of 𝜁𝑐 = 0.160, for 𝑏’ =
2.363. This is 6.1 times of that provided by a viscous damper, and it is slightly better than result 

provided by Structure II shown in Figure 4(a). However, Structure III has drawback that a relatively 

large 𝑏’ is needed for optimum 𝜁𝑐 to be large. The optimum 𝜁𝑐 of Structure III is larger than that of a 

damper alone, only if 𝑏’ > 1.15.  
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a)  b)  

 

Figure 5. Optimisation results for Structure III with varying 𝑏’ for 𝑎𝑓’ = 0.05. (a) Damping ratio versus 

non-dimensional inertance of the damper. (b) Corresponding non-dimensional natural frequency. 

 

Similar to the case for Structure II, it can be seen in Figure 5(b) that the natural frequency of the critical 

mode are close to that of the original undamped mode 1. The breakpoint at 𝑏’ = 2.363 in Figure 5(a) 

can be observed due to the crossover of the two modes. 

3.4. Optimum results for Structure IV 

It can be seen in Figure 6(a) that among all the optimum results with varying 𝑏’, the absorber of structure 

IV can provide maximum optimum critical damping ratio of 𝜁𝑐 = 0.160, for 𝑏’ = 2.363. Compared 

with Structure III, Structure IV has the same maximum optimum 𝜁𝑐 as Structure III, but Structure IV is 

more effective when 𝑏’ is relatively small. 

 

a)  b)  

 

c)   
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Figure 6. Optimisation results for Structure IV with varying 𝑏’ for 𝑎𝑓’ = 0.05. (a) Damping ratio versus 

non-dimensional inertance of the damper. (b) Corresponding non-dimensional natural frequency. (c) 

Corresponding non-dimensional stiffness. 

 

For any optimised 𝜁𝑐 with a given inertance 𝑏’ ≤ 2.363. The two modes of the system with 𝜔’ < 1.5 

provide the same damping ratio and vary similar natural frequencies (Figure 6(b), approximately 0.1% 

different). When 𝑏 > 2.363, the two modes bifurcate. This is because the non-dimensional stiffness 𝑘’ 
for the optimum has reduced to zero (Figure 6(c)). Since 𝑘’ cannot physically be negative, for 𝑏 >
2.363 the optimum value of 𝑘’ is zero and the solution are then the same as for Structure III. 

3.5. Comparison of all four structures 

Figure 7 shows the optimum critical damping ratio with mass ratio 𝑏’ ranged from 0 to 2.5 for all four 

structures. For Structure I, since 𝑏’ always equal to zero, the optimum critical damping ratio is marked 

as a cross on Figure 7.  It can be seen that, all other three structures comprising one inerter can be more 

beneficial with suitable 𝑏’. The optimum critical damping ratio of Structure I is 𝜁 = 0.0264. For 

Structure II, the maximum optimum critical damping ratio with varying 𝑏’ is 𝜁 = 0.156 with 𝑏’ =
2.363. For Structure III and Structure IV (TID), the maximum optimum critical damping ratios are the 

same, which is 𝜁 = 0.160 with 𝑏’ = 2.363. When 𝑏’ > 2.363, optimum critical damping ratios for 

Structure III and IV are the same. This is due to the fact that the optimum non-dimensional stiffness 

𝑘’ = 0 for Structure IV with 𝑏’ = 2.363. 

 

  
 

Figure 7.  Comparison of optimum 𝜁 with varying 𝑏’ for all four structures (𝑎𝑓’ = 0.05) with varying 

𝑏’, ranged from 0~2.5.  

 

Based on Figure 7, it can be concluded that all three structures with inerters are far more beneficial than 

damper with suitable 𝑏’ is.  Within the vibration structures considered, the most beneficial structure for 

𝑏’ within the range (0, 0.07], (0.07, 2.363] and (2.363, 2.5], are Structure II, Structure IV and Structure 

III & IV, respectively. Even though the Structure IV is the most effective structure for a large range of 

b values, it should be noted that a device with large inertance is hard to be manufactured. For this reason, 

the benefit provide by Structure II cannot be neglected. 

4. Conclusions 

In this paper, a FE model of the cable is introduced. The damping performance of three vibration 

absorber structures of cables were analysed and compared with a traditional viscous damper. The 

concept of critical damping ratio was proposed and used as the performance criterion for optimisation. 

Based on the results, all three structures can provide improvement over traditional damper with suitable 

inertance values. The conclusion of the optimum structures with respect to the non-dimensional 

inertance viable 𝑏’ within the range (0, 2.5) were presented. 
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The results shows that all three structures with inerters can provide better optimum damping ratio 

compared with structure I, viscous damper connected at the same location with suitable range of 

inertance 𝑏’ selected. Furthermore, in a relatively broad range of 𝑏’ (0.07, 2.5], Structure IV (TID) is 

the most beneficial structure among the all structures studied.  
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