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Abstract. This paper shows experimental performance evaluation of a new control system for 
active mass dampers (AMDs). The proposed control system consists of a position controller 
and neural oscillator, and is designed for the solution of a stroke limitation problem of an 
auxiliary mass of the AMDs. The neural oscillator synchronizing with the response of a 
structure generates a signal, which is utilized for switching of motion direction of the auxiliary 
mass and for travel distances of the auxiliary mass. According to the generated signal, the 
position controller drives the auxiliary mass to the target values, and the reaction force 
resulting from the movement of the auxiliary mass is transmitted to the structure, and reduces 
the vibration amplitude of the structure. Our previous research results showed that the 
proposed system could reduce the vibration of the structure while the motion of auxiliary mass 
was suppressed within the restriction; however the control performance was evaluated 
numerically. In order to put the proposed system to practical use, the system should be 
evaluated experimentally. This paper starts by illustrating the relation among subsystems of the 
proposed system, and then, shows experimental responses of a structure model with the AMD 
excited by earthquakes on a shaker to confirm the validity of the system.  

1.  Introduction 
Active mass dampers are widely used as anti-vibration devices for high-rise buildings to improve the 
livability. These systems have enough vibration reduction performance for swinging in the wind. 
However it faces the status quo that the system is forced to be shut down when large earthquakes 
occur 1. It is because that there are two serious issues for the active mass dampers. One is the issue of 
robustness against parameter variation caused by the deformation and destruction of the structure, and 
the other is stroke constraint that depends on the location and motion of the active mass damper’s 
auxiliary mass. To solve these problems, there has been considerable research on controllers based on 
the linear control theory and having various functions. As a result of the research, the revised 
controllers gave better results than that of the ordinary controllers, but the modifications have not been 
drastically improved and no prospect of actually using of the controllers has yet emerged. 

On the other hand, neural oscillators, called central pattern generators (CPGs), have been 
extensively studied over the last few decades in the field of biological study 2-3. The CPG can generate 
simple and rhythmic electrical signals capable of extending and retracting muscles 4, and be viewed as 
a significant component of the control system for animal locomotion. The most intriguing property of 
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the neural oscillators is the ability to harmonize with external periodic input. Because of this 
entrainment property to resonance, the neural oscillators can generate locomotion rhythm patterns in 
response to parameter changes of body (for example, a sprained leg) or changes in the environment 
and keep the appropriate and simple phase relation, such as the out-of-phase oscillations between a 
pair of left and right legs. Furthermore, mathematical models of the CPGs of animate beings have been 
studied. Matsuoka proposed a neuron model that is expressed by a pair of first order lag elements, i.e. 
simple enough to reproduce synchronization property. He also attempted to give mathematical proof 
of the condition for the generation of the vibration. These studies have been inspiring study of walking 
robots. Researchers who were interested in locomotive robots have studied to develop walking 
controllers using the pattern generators. Kimura et al. embedded the neuronal generator to a 
quadrupedal locomotion robot and developed the control system, which could walk on irregular 
ground without detailed data of the ground surface.  

In contrast to these works on the active mass damper systems and locomotive robot systems, it 
seems that the relation between the both legs, which has stroke limitation and robust stability, is 
similar to the required relation between the structure and the auxiliary mass of the active mass damper 
for vibration reduction. Because of this background, a new control system for active mass dampers 
using the neural oscillator was proposed in our previous study 5. The control system mimicking the 
motion of bipedal mammals is an incredibly simple system, which has the single neural oscillator 
synchronizing with acceleration response of structures. The travel distance and direction of the 
auxiliary mass of the active mass damper is determined by the output of the neural oscillator, and then, 
the auxiliary mass is transferred to the desired position by using a PID controller. This control system 
can generate the target displacement of the auxiliary mass from the structure’s acceleration response; 
therefore, the system does not need the observation of fully state of the controlled object; in other 
words, it is unnecessary to design the observer. In addition, one of the purposes of the proposed 
system was to avoid the stroke restriction problem of the auxiliary mass during large earthquakes by 
restriction of the determined-desired value within the stroke limitation. It seemed that it was 
potentially possible to restrict the stroke of the auxiliary mass by the proposed. In fact, our previous 
study showed that the system suppressed the motion of the auxiliary mass during strong earthquakes in 
comparison with a linear controller 6. However, no experimental study to evaluate the stroke restriction 
property of the proposed system had been done. In order to be utilized in practical application, the 
controller had to be analyzed by way of experiment. 

The objective of this paper is to evaluate the vibration control performance and the stroke 
restriction property of the proposed system by an experimental apparatus equipped with a 
microcomputer with the proposed control algorithm installed. This paper starts by illustrating the 
relation among subsystems with reference to a block diagram, and explains the governing equations of 
the subsystems, then, shows experimental responses of the system with external input. Finally, the 
experimental results are examined and compared with the simulation results to evaluate the stroke 
restriction property. 

2.  The proposed system 
The block diagram of the proposed active mass damper’s system is shown in figure 1. In this system, 
the target model consists of a structure and a mass of the AMD. The acceleration response of the 
structure with the AMD to ground excitations, which is named as “Output 1” in this figure, is 
measured by an accelerometer on the structure. Next, a neural oscillator included in the neural system 
is synchronized with the acceleration response of the structure, and the desired value of the auxiliary 
mass can be determined by the oscillator's outputs. Finally, the PID controller drives the auxiliary 
mass to the desired value, and the inertial force of the auxiliary mass works to dissipate energy of the 
structural vibration. In this figure, “Output 2” is the relative displacement of the auxiliary mass of the 
active mass damper, which is the sensory feedback information for the positioning control. From the 
next subsection, the details of each block will be explained. 
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Figure 1. The block diagram of the proposed system 

2.1.  Target model 
In this subsection, the target model for vibration control is explained. The target model, a single-
degree-of-freedom structure with an active dynamic absorber, is shown in figure 2. The structure mass 
mS is supported by the spring kS and the damper cS, which are connected in parallel. In this figure, xS is 
the relative displacement of the structure mass and xA is the relative displacement of the auxiliary mass. 
The mass mA of the active mass damper on the top of the structure is driven by an actuator which 
generates the control force u . The equation of motion of the vibration model is obtained as equation (1). 
Where, the ground displacement is given z . 

 

 
Figure 2. Overview of the target model 

 

 
mS !!xS + cS !xS + kS xS = −u−mS (!!xS + !!z)
mA!!xA +mA!!xS = u−mA(!!xS + !!z)

⎧
⎨
⎪

⎩⎪
 (1) 

2.2.  Neural system 
In this subsection, the neural oscillator for the AMD system is explained. A Matsuoka’s neural 
oscillator is used as the neural oscillator7-8. When absolute acceleration response of a structure is given 
to the neural oscillator as input, the mathematical model of the oscillator is obtained as in equation (2). 
 

 

τ !xe + xe = −amax(0,x f )+ s−b ʹxe +τε(!!xS + !!z)

τ !x f + x f = −amax(0,xe )+ s−b ʹx f −τε(!!xS + !!z)

T ʹ!xe + ʹxe =max(0,xe )

T ʹ!x f + ʹx f =max(0,x f )

⎧

⎨

⎪
⎪

⎩

⎪
⎪

 (2) 

 
This mathematical model contains two neural cell models and can establish sustained oscillation. 

Each cell model has two first-order lag systems to capture excitation and inhibition properties of the 
cell. Generally, this five parameters s, τ, T, b, a are determined by identification of a neuron, but the 
specified animate being is not considered in this study. The parameters are chosen by a design method 
to generate the oscillation with a natural frequency and amplitude desired. Here, ε means input gain to 
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the neural oscillator. According to the method, the natural frequency ω and the amplitude A of the 
oscillator can be expressed as following equations, which include the neural parameters. 

 
ω =

0.212
τ

A0 = 0.612s
 (3) 

Where, 

 

τ > 0
s > 0
T =12τ

b = a = (T −τ )
2

4Tτ

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

 (4) 

This neural oscillator has to be synchronized with the response of structures to earthquakes. 
Assuming the response has mainly the component of the natural frequency, the neural oscillator 
should have the same natural frequency which the target structure has. Additionally, in this study, the 
amplitude of the oscillator is set to 1. 

In addition, the synchronized neural oscillator can be considered that the output has the information 
of the structure response. Thus, in this study, the travel distance of the auxiliary mass and the driving 
timing are determined by the oscillator’s state quantities. Here, an energy function using the 
oscillator’s state quantities is introduced as 
 H = ʹxe

2 + ʹx f
2  (5) 

Using the oscillator’s state quantities and the energy function, the desire value r (travel distance) of 
the auxiliary mass is obtained as 

 r =

−α ∗ H −H0 if xe (t −Δt) < 0 and xe (t) > 0

α ∗ H −H0 if x f (t −Δt) < 0 and x f (t) > 0

r(t −Δt) else

⎧

⎨

⎪
⎪

⎩

⎪
⎪

 (6) 

Here, H0 is the initial constant value of the energy function without the input, α is the conversion 
coefficient (output gain) from the oscillator energy to the travel distance of the auxiliary mass, and Δt 
is small time. In addition, when the desired value for the auxiliary mass is exceeded the limitation, the 
decided value by the neural system is replaced by the maximum value. In this paper, the stroke 
limitation of the auxiliary mass is described as  
 r ≤ Rmax  (7) 

After the desired travel distance of the auxiliary mass is obtained, the position controller (in this 
study, PID controller) derives the auxiliary mass to the desired value. 

 

2.3.  Position controller 
In this section, the position control is explained. The PID controller derives the auxiliary mass to the 
desired position, according to the information of the decided travel distance and direction by the neural 
system as shown in Figure 1. The P and I gains are the usual proportional and integral gains, but the D 
gain is not the usual differentiate gain but it works as the imaginary damper, which has negative sign 
to moderate the motion of the auxiliary mass. Here, KP, KI and KD describe the proportional, integral 
and differential gain, respectively. The control force, which depends on the desired value r, is 
calculated as follow. 
 u = KP (r − xA)+ KI (r − xA)dt − KD !xA∫  (8) 
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Here, the design method of the PID controller is explained. Generally, the PID controller as a 
position controller must be designed in consideration of the index about the quick response to the 
desired value. However, the control purpose of the proposed system is the energy dissipation by 
driving the auxiliary mass. Therefore, another index taking into account of energy dissipation is 
necessary for the PID gain design. The proposed design procedure is, firstly, the relationship between 
the P, I and D gains is restricted by reference to the critical damping of the vibration system, next, the 
driving path of the auxiliary mass depending on the P-gain is analytically solved from the motion 
equation without structures. Then, its ideal driving path for the auxiliary mass is introduced by 
assuming that the structure motion is swinging as a sinusoidal wave under sinusoidal excitation; i.e. its 
ideal driving path must be also a sinusoidal wave. Finally, the appropriate values of the P, I and D 
gains are determined by the value, which minimizes the inner product of the acceleration of the 
analytical solution xA and the ideal path x’A. According to this design method, the proportional gain P 
and the restricted I and D gains are obtained as follow. 

 

 

KP =mAkP ,max (kP ,max ={kP max(cosβA)})

KI =
1
3 3

mA(kP ,max )
3 2

KD = 3mA(kP ,max )
1 2

⎧

⎨

⎪
⎪

⎩

⎪
⎪

 (9) 

 
Where, kw=Kw/mA, the cosine of the analytical solution xA and the ideal path x’A is obtained as 

follow. 

 

cosβA =
!!xA, !!́xA
!!xA !!́xA

=
!!xA!!́xA dt0

π ωn∫
( !!x2A dt)

1 2 ( !!́x 2A dt0

π ωn∫ )1 2
0

π ωn∫

 (10) 

3.  Experimental apparatus 

3.1.  Vibration table 
This subsection shows a vibration table system. Figure 3 shows the vibration table and its peripheral 
equipment. This vibration table system consists of a microcomputer (Arduino DUE) equipped with 
acceleration record of earthquakes, a laptop computer, which is for supply a start signal to the 
microcomputer, an amplifier and a shaking table. The microcomputer outputs the earthquake record 
with an appropriate sampling time to the amplifier, and the amplified signal is input to the shaking 
table to excite the structure. This system does not have any sensor for feedback, i.e. open-loop system. 
Therefore, the original earthquakes cannot be generated, because the generated motion on the shaking 
table is not controlled in the reproducible way. 
 
 
 

 
Figure 3. The photographic of the vibration generator and peripherals 
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3.2.  Structure and active mass damper 
Figure 4 shows the photograph of the developed structure equipped with the active mass damper 
system and figure 5 shows the outline of the equipment. 
 

  
Figure 4. Photograph of apparatus Figure 5. Outline of apparatus 

 
The single-degree-of-freedom structure is made of duralumin and consists of four support plates,  

top and bottom plates. The active mass damper system is mounted on the top of the structure. The 
active dynamic absorber system consists of the auxiliary mass, which is made of duralumin and whose 
mass is 0.5 kg, a DC motor as an actuator to drive the mass, a ball screw to transfer rotation of the 
motor to translate motion, a microcomputer (Arduino Mega), in which the mathematical model of the 
neural oscillator and the algorithm for the target displacement of the mass using the oscillator output is 
embedded, a laser displacement sensor to measure the motion of the auxiliary mass, and acceleration 
sensors to measure the ground input and structure response. Table 1 shows the specifications of the 
structure and table 2 shows the specifications of the active mass damper system. The embedded the 
neural oscillator has the natural frequency at 1Hz to match the structure’s natural frequency. 
Furthermore, the mass ratio of the auxiliary mass and the structure is 0.05. In addition, the maximum 
and minimum stroke of the auxiliary mass Rmax is plus or minus 40 mm. 
 

Table 1. Parameters of structure 
Mass 10 kg 

Natural frequency 6.22 rad/s (about 1 Hz) 
Damping ratio 0.05 

 
Table 2. Parameters of active mass damper 

Auxiliary mass 0.5 kg 
Ball screw φ8 mm, lead 4 mm 
DC motor 4700 rpm, 17.3 mN･m, 12 V 

Acceleration sensor ±2g, 600 mV/g, 5 V 
Displacement sensor ±50 mm, 20μm, 10V 

Microcomputer Arduino MEGA2560 
 

In addition, in order to put the active mass damper system to practical use, the control force 
generated by the above-mentioned PID controller should be transferred to the voltage applied to the 
DC motor with consideration of the inertia moment and transmission efficiency of the ball screw. In 
this paper, the following equation is used for the transformation. 
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V =

1
µ
KVKMu

 
(11) 

Where, KM describes a coefficient in relation to the inertia moment, µ is the transmission efficiency 
and KV describes the transformation coefficient from the control force to the voltage.  

3.3.  Friction force compensation 
The retarding effect of friction on the motion of the active mass damper cannot be neglected in the 
actual system. The friction force acting on the system is considered as following equation. 

 

 
mS !!xS + cS !xS + kS xS − cC

!xA
!xA

= −u−mS!!z

mA!!xA +mA!!xS + cC
!xA
!xA

= u−mA!!z

⎧

⎨

⎪
⎪

⎩

⎪
⎪

 (12)  

Here, cc is the coefficient of coulomb friction. For the PID gains design, the friction force is not 
considered in the equation of motion. Therefore, the actual displacement of the auxiliary mass driven 
by the designed PID controller is considered to not reach to the target displacement, or to not move in 
case of the small target displacement, because of the friction force. To avoid this situation, the 
compensation term Ff, which is related to the friction force, is introduced to the control force u as 
shown in the following equation. 

 u ' =
u+ Ff     if  !xa > 0

u− Ff     if  !xa < 0

⎧
⎨
⎪

⎩⎪
  

However, the relative velocity !xa  of the auxiliary mass is not measured in our system. Instead of 
using the relative velocity, a plus or minus sign of the desire value r is for switching. Thus, 

 

 u ' =
u+ Ff     if  r > 0

u− Ff     if  r < 0

⎧
⎨
⎪

⎩⎪
 (13) 

3.4.  Low-pass filter 
The developed system has the acceleration sensor for measurement of structure response. However, 
the signal from the acceleration sensor is typically a combination of the structure response, sensor and 
environmental noise. In order to remove the effects of sensor and environmental noise, a low-pass 
filter is installed in the system. The low-pass filter we considered is a simple first order lag system, RC 
filter, which is obtained as the following equation. 

 !y + 1
CR

y = 1
CR
x  (14) 

Where, x and y are the input and output voltage of the RC circuit. The cut-off frequency of this 
circuit is obtained as 

 fc =
1

2πCR
 (15) 

This filter is realized as a digital filter in the microcomputer. 
 y[n]= a f y[n−1]+ (1− a f )x[n]  (16) 
Where, 

a f =
CR

CR+Δt
 

and Δt is the sampling time of the microcomputer. The sampled acceleration response is the input to 
the filter as x and y is the output of the filter.  

MOVIC2016 & RASD2016 IOP Publishing
Journal of Physics: Conference Series 744 (2016) 012040 doi:10.1088/1742-6596/744/1/012040

7



 
 
 
 
 
 

The low pass filter has a time delay. If the cut-off frequency was set to near the natural frequency 
of the structure model, and the phase delay of the filter would have a significant influence on the input 
to the neural oscillator. A small time delay would be preferred to improve the performance of the 
vibration reduction. 

4.  Results of shaking table test 
In this section, we evaluate the vibration reduction performance and the stroke restriction property of 
the proposed system by the developed experimental apparatus equipped with the microcomputer with 
the proposed control algorithm installed. Table 3 shows the parameters of the neural system in the 
proposed system, and table 4 shows the parameters of the position control system we used in the test. 

 
Table 3. Parameters of neural system 

Parameters Value 
τ 0.0341 
T 0.409 
b 2.52 
a 2.52 
s 1.634 
ε 15 
α 0.8 
H0

 0.2367 
 

Table 4. Parameters of position control system 
Parameters Value 

KP
 13 

KI
 13 

KD
 0 

KV 0.267 
KM 10 
Ff 1.0 
af 0.9 

 

4.1.  Evaluation of vibration control performance 
Firstly, we evaluate the vibration control performance of the proposed system by experiment. Figure 6 
(a) and (b) show the ground acceleration input to the structure model. El Centro NS, whose magnitude 
and time are appropriately modified for resonance, was used as the earthquake input. However, it can be 
seen in the figure 6(a)(b) that the measured acceleration is not identical to the original earthquake 
wave, because the shaking table was driven by the open-loop control system. The data (a) (black line) 
is for the structure without control, and the data (b) (red line) is for the structure with the proposed 
control system. 

Figure 6(c)(d) show the acceleration responses of the structure without and with control. (c) is the 
structure’s response without control (black line), and (d) is the response with the control system (red 
line). The convergence speed of the structure’s acceleration response controlled by the proposed 
system was high, in other words, the transient response performance was improved. On the other hand, 
the acceleration response of the structure with the proposed controller is noisy data. Probably, the 
noise was generated by the motion of the ball screw and DC motor. We should have to look for ways 
to reduce noise near future. 

Figure 7 shows the frequency response of the system with/without controller. In the figure, the 
black solid line is the resonance curve without controller and the red solid line is that of the structure 
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with the proposed control system. It appears that the peak at the resonance frequency was drastically 
reduced.  

 
(a)Input (without control)   (b) Input (with control) 

 

 
(c)Output (without control)   (d)Output (with control) 

Figure 6. Input and output of structure with/without control 
 

 
Figure 7. Resonance curves with/without control 

 

4.2.  Motion of the auxiliary mass and stroke constraint 
In this subsection, we shall first verify through experiments that the position control system is able to 
achieve tracking performance to the ideal displacement path of the auxiliary mass. Figure 8 shows the 
target value generated by the neural system and the motion of the auxiliary mass driven by the DC 
motor and ball screw. The gray solid line is the target value for the auxiliary mass, and the blue solid 
line is the relative displacement of the mass. It appears that the auxiliary mass could move a little 
behind for the target value. However, it can be seen in this figure that the measured displacement data 
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of the auxiliary mass has overshoot phenomenon in the response. A possible reason is that the 
displacement measured by the laser displacement sensor has spikes in the data, the PD gain of the 
position controller is a bit high or the friction compensator is not accurate enough to cancel the friction 
force. We should have to improve the position control system for the stroke restriction problem near 
future. 

 
Figure 8. Target value and displacement of the auxiliary mass 

 
Next, we evaluated the stroke restriction property of the proposed system. The double amplitude 

size earthquake was input to the structure, and the acceleration responses of the structure and the 
relative displacement of the auxiliary mass were measured during the ground shaking. The max-min 
stroke of the auxiliary mass is 40 mm.  

Figure 9 (a) and (b) show the ground acceleration input to the structure model, whose amplitude are 
double compared with that of the abovementioned experiment. The black line (a) is the input to the 
structure without control and the red line (b) is the input to the structure with our controller. Figure 9 
(c) and (d) show the acceleration responses of the structure with and without control. The response of 
the controlled structure (red line) differs very little from the response of the non-controlled structure 
(black line) compared with the small earthquake case. 

   
(a)Input (without control)   (b)Input (with control) 

 
(c)Output (without control)   (d)Output (with control) 

Figure 9. Input and output of structure with/without control (in case of large amplitude) 
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Figure 10 shows the resonance curves of the system with/without controller. In the figure, the black 

solid line is the resonance curve without controller and the red solid line is that of the structure with 
the proposed control system. It appears that the vibration reduction performance is not enough 
compared with the case of small size earthquake.  

 Figure 11 shows the target value and the relative displacement of the auxiliary mass. Because the 
stroke was restricted within plus or minus 40 mm, the maximum or minimum target value was also 
plus or minus 40 mm. Moreover, the motion of the position-controlled auxiliary mass was almost in 
the limitation. Due to this restricted motion of the auxiliary mass, the control performance of the 
system was reduced as shown in figure 10, however, we would not need to stop the system, even if 
large earthquakes happen. In this figure, as can be seen, the motion of the auxiliary mass has the 
overshoot phenomenon, but this problem will be improved by modification of the position control 
system. 

 
Figure 10. Resonance curves with/without control (in case of large amplitude) 

 
Figure 11. Restricted target value and displacement of the auxiliary mass 

 
5.  Conclusion 
The objective of this paper was to evaluate the vibration control performance and the stroke restriction 
property of the proposed system by experiment. The proposed controlled system is a very simple 
control system, which is for the AMDs mimicking the motion of bipedal mammals and has a neural 
oscillator and a position controller. In the system, the auxiliary mass of the AMDs is operated to the 
desired position by the position controller, and therefore, it is easy to restrict the desired value within 
the limitation. However no study shows the control performance and the stroke restriction property of 

0 0.5 1 1.5 2 2.5
Frequency [Hz]

10-1

100

101

102

G
ai

n

With control
Without control

0 5 10 15 20 25 30 35 40
Time [s]

-50

-40

-30

-20

-10

0

10

20

30

40

50

D
is

pl
ac

em
en

t [
m

m
]

Target value
Motion of auxiliary mass

MOVIC2016 & RASD2016 IOP Publishing
Journal of Physics: Conference Series 744 (2016) 012040 doi:10.1088/1742-6596/744/1/012040

11



 
 
 
 
 
 

the proposed system by experiment. Thus, in this paper, the proposed system was validated through 
experiments. First, the vibration control performance of the proposed system was evaluated. The 
experimental results showed that the acceleration response of the structure controlled by the proposed 
system was reduced. Second, the stroke restriction property of the proposed system was evaluated. 
The experimental results showed that the relative displacement of the auxiliary mass controlled by the 
proposed system was able to be within the limitation during large earthquake. Future work is to 
improve the position controller, which has a small time delay and efficient energy dissipation property. 
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