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Abstract.  
       A nonlinear substructuring control (NLSC) method is developed as a more generalised 
form of linear substructuring control (LSC) by incorporating nonlinear signal-based control 
(NSBC) into a dynamical substructuring system (DSS). An advantage of NLSC is that it can be 
designed using the linearized models of the substructured systems without the need for 
accurate nonlinear dynamic models. In this study, the use of the NLSC method is demonstrated 
via substructured tests on nonlinear physical and numerical substructures. 
       A series of substructuring tests were also conducted on a test rig, constructed within the 
ACTLab at the University of Bristol, which incorporated a pure time delay of 6.0 ms due to the 
presence of discrete-time elements. In the substructured tests, a trilinear hysteresis with 
piecewise linearity, commonly used in structural engineering, was embedded into the 
numerical substructure as the nonlinearity. The NLSC method was found to achieve stable and 
reliable substructured responses, even when the substructured systems had significant 
nonlinearity as well as the pure time delay term. 

 
1. Introduction 

Dynamically substructured experimentation, where a physical experiment and numerical 
simulation are conducted at the same time (with real-time interaction between them), in order to 
emulate the behaviour of a complete system, was originally developed for the examination of large 
specimens such as civil structures. The ideal substructured test is achievable only when the real time 
interaction between the physical and numerical substructures occurs over an infinitesimally short time. 
However, real implementations inevitably require transfer systems (i.e. actuators and measurement 
systems) for the interaction of the two substructures, and discrete-time elements in the transfer system 
(e.g. controllers and signal conditioners) result in the generation of a pure time delay. This pure time 
delay can have significant influence on the stability of the experimentation, even if it is generally of 
the order of milliseconds. 

The hybrid simulation (HS) scheme is commonly used for substructured experimentation. In the 
HS scheme, the critical pure time delay (the maximum value to maintain stability, which is also used 
as an index of relative stability) is directly governed by the damping and natural frequency of the 
physical substructure, ωp and ζp respectively. This critical pure time delay can be approximated as 
2ζp/ωp, [1,2]. Thus, the HS scheme is problematic when physical substructures have small damping 
and high natural frequencies. Therefore, many compensation methods have been actively developed 
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for negating the effect of the pure time delay (e.g. [2-9]) in the HS scheme. Very often, investigations 
have assumed that the complete actuator dynamics can be modelled as a pure time delay, an 
assumption that is avoided in this work.  

 An analysis and synthesis framework for such problems, termed the dynamically substructured 
system (DSS) scheme, was developed from a control engineering point-of-view; [10,11]. The 
corresponding linear substructuring control (LSC) method, developed together with DSS in [10], was 
found to provide DSS with high robustness for linear systems containing pure time delay elements; 
[1]. This robustness results from the LSC design, where the closed-loop characteristic polynomial can 
be synthesised to have an arbitrarily large relative stability margin, a result that is in sharp 
contradistinction to the fixed margins induced by techniques such as HS (or, to use its often used 
misnomer, ‘hardware-in-the-loop simulation’); [11]. 

In this study, a nonlinear substructuring control (NLSC) method - a more generalised form of 
LSC - is developed as an application of the nonlinear signal-based control method (NSBC), [12], to 
DSS. NSLC is examined via a substructured test of a 2-DOF system for a nonlinear base-isolated 
structure, as shown in Figure 1. 

 
2. Nonlinear substructuring control 

The development of NLSC is based on NSBC [12], which utilises a ‘nonlinear signal’ obtained 
from the difference of the outputs of the nonlinear system and its linear model under the same input. In 
the block diagram of NLSC shown in Figure 2, the nonlinear substructures are expressed by:  
 

     
     

    
 

    

p p p

n n n

G s G s G s

G s G s G s
 (1)   

 
where {Gp, ΔGp, Ḡp} is the physical substructure, the nonlinear term and the linear model, 
respectively, and {Gn, ΔGn, Ḡn} is the numerical substructure, nonlinear term and the linear model, 
respectively. In Figure 2, the output forces from the nonlinear physical substructure and its linear 
model can be expressed by: 
 

       
       
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Figure 1. Dynamical substructuring test of a base-isolated structure with a rubber bearing. 
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where fp and pf  are the forces obtained from the physical substructure and its linear model, Gts is the 

dynamics of transfer system and u is the input signal to the transfer system. Outputs from the 
numerical substructure and its linear model can be expressed as: 
 

        
        

    
 

    

n n p d

n n p d

x s G s f s f s

x s G s f s f s
 (3)    

 
Based on equations (2) and (3), the nonlinear signal, σ, shown in Figure 2 is expressed as: 
 

     
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n n
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 (4)    

 
Here, the outputs of the substructures are determined as:  
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where:      
             1 0 2, ,   d
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and {Ḡ0, Ḡ1, Ḡ2} is the transfer function set of linear models. Based on equation (5), the error signal 
between the outputs of two substructures is expressed as: 
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Figure 2. Nonlinear substructuring control, (NLSC) 
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                     n p n p d ue s x s x s x s x s s G s d s G s u s s          (6)    

 
where:          1 0 2,  d uG s G s G s G s G s . 

As shown in equation (6), the error signal is composed of three signals {e, d, σ} related to numerical 
linear model, physical substructure and nonlinear signal, respectively. Thus, the control signal is 
proposed as: 

 

             d eu s K s d s K s e s K s s     (7)    

 
Substituting equations (7) into (6), the error signal is rewritten as: 

 

       
         

     1

1 1
d u d u

u e u e

G s G s K s G s K s
e s d s s

G s K s G s K s
 

 
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 
 (8)    

 
The controller transfer functions, Kd and Kσ, need to be determined so that the error becomes zero. 
According to equation (8), this is ideally achieved by: 

 

   
     

1
,d

d
u u

G s
K s K s

G s G s   (9)    

 
When these controller transfer functions are adopted, good control is achievable. In this case, the error 
feedback action with Ke does not play a key role. However, the error feedback action Ke is important 
for the compensation of the error generated due to uncertainty and pure time delays. 

In the study of LSC in [1], the following equation was found to be a suitable design for Ke:     
 

   
 

2

1
e

u

s b
K s

G s s



 (10)    

 
Then, the characteristic equation of the closed-loop system described by equation (8) is expressed as: 
 

     
2

1 1u e

s b
G s K s

s



   (11)    

 
Based on the classic roots’ loci method applied to the open-loop transfer function in equation (11), the 
controller transfer function Ke can be designed in more detail. Thus, selecting the dominant roots at the 
break point, s = −2b, results in a critically damped closed-loop system with an approximate settling 
time of 2/b. Given that the settling time of the transfer system is approximately 4/a, a suitable design is 
to ensure that 2/b = 8/a, i.e. b = a /4. 
 
 
3. Experimentation 

NLSC was examined via a substructured test on a nonlinear 2DOF model of a base-isolated 
structure. Base isolation systems are often used for the prevention of major structural damage under 
earthquake excitations and hence plasticisation of the superstructure is unlikely to happen in practice. 
However, for verification of the substructuring test with NLSC, we intentionally designed the 
superstructure of the base-isolated structure to have low strength, so that it was susceptible to severe 
damage under moderate earthquake excitation. In this substructured test, the base isolation system 

MOVIC2016 & RASD2016 IOP Publishing
Journal of Physics: Conference Series 744 (2016) 012039 doi:10.1088/1742-6596/744/1/012039

4



 
 
 
 
 
 

 
 

constituted the physical substructure and the rest of the structure constituted the numerical 
substructure, as shown in Figure 3. 

 

 
2.1 Configuration 

The emulated 2-DOF dynamics, subjected to an earthquake excitation in Figure 3, are expressed 
by: 

 

        

            
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 

       

  

   

c k

c k c k

m x t d t f x x t f x x t

m x t d t f x t f x x t f x x t f x x t
 (12)    

 
where d is the ground motion (i.e. earthquake excitation) and {xi, mi,  fci, fki}, (i = 0,1), is the relative 
displacement, mass, damping force and restoring force in the ith storey. The numerical and physical 
substructure dynamics are then expressed by:   

 

        

             
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 (13)    

 

       , ,p p pc p pk p pm x t f x t f x t f t     (14)    

 
where m0n= m0-mp, m1n= m1 and{fn, x0n, m0n} is the force, relative displacement and mass of the ground 
floor (GF) in the numerical substructure, {x1n, m1n, fc1n, fc1n} is the relative displacement, mass, 
damping force and restoring force of the 1st (1F) storey in the numerical substructure and {fp, xp, mp, 
fpc, fpk} is the relative displacement, mass, damping force and restoring force of the physical 
substructure, respectively. 

Linear models of the substructures are based on linearization of the stiffness and damping terms, 
as follows:  
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where 0 0 1 1 1 1, , ,p p n n n n n nm m m m m m c c    . In addition, { nf , 0nx , 0nm } is the force, relative 

displacement and mass of the GF storey in the numerical linear model, { 1nx , 1nm , 1nc , 1nk } is the 
relative displacement, mass, damping coefficient and stiffness coefficient of the 1F storey in the 
numerical linear model and { pf , px , pm , pc , pk } is the force, relative displacement, mass, damping 

coefficient and stiffness coefficient of the physical linear model. 
In the Laplace domain, the outputs of the physical and numerical substructures are then 

determined as: 
 

               
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where: 

 
     

   

 
  

   

 

6 5 4
0 1 1 0 1 1 0 1

1 6 5 4
0 1 1 0 1 1 0 1

2 2
1 1 1

0 4 3 2
0 1 1 0 1 1 0 1

2

       
 

    
 

    
 

    
 
 

 
 

p n n n p n n n p n n

n n n n n n n n

p p p n n n

n n n n n n n n

m m m s c m m m s k m m m s
G s

m m s c m m s k m m s

m s c s k m s c s k a
G s

s am m s c m m s k m m s

a
G s

s a

 

Note that base-isolated structures are normally tested using the recorded acceleration from an 
earthquake site, hence equation (17) is also written for the ground motion acceleration. Based on the 
general transfer functions G0, G1 and G2 in equation (17), the controller transfer functions will be 
designed for each testing condition, as shown below. 

 
2.2 Test conditions 

 
The schematic representation of the test rig in Figure 4 comprises a ±25 kN force, ±120.0 mm 

stroke servohydraulic actuator and a proprietary inner-loop discrete-time controller (together known as 
the transfer system), plus a connecting steel plate and a bearing made of natural rubber (the physical 
substructure). In addition to the substructure control signal, the actuator was configured to additively 
generate earthquake ground excitations to the rubber bearing. The diameter and height of the rubber 
bearing were 200.0 mm and 125.0 mm, respectively, and the measured mass of the steel plate was 115 
kg. Rigid connections ensured that the outputs from the LVDT displacement transducer and load cell 
attached to the actuator were equivalent to the displacement and force applied to the rubber bearing. 
DSS was implemented as an outer-loop configuration using dSPACE 1104 hardware, operating with a 
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sampling interval of 1.0 ms. 
Identification tests were conducted on the physical substructure and transfer system using a 

band-limited white noise excitation between 0.02×2π rad/s and 100.0×2π rad/s, of time duration 120.0 
s and a sampling interval of 1.0 ms. Following system identification, the parameters of the physical 
substructure were determined as mp = 114.3 kg, cp = 354.6 Ns/m and kp = 158.4 kN/m, resulting in a 
natural frequency and damping ratio of ωp = 5.91×2π rad/s and ζp = 0.0415. Similarly, the dynamics 
and pure time-delay of the transfer system were identified as a = 75.0 s−1 and τ = 6.0 ms.  

The numerical substructure parameters were selected as m0n = 9885 kg, m1n = 10000 kg, 
k1n = 158.4 kN/m and c1n = 354.6 Ns/m, so that the emulated system had homogenous parameters for 
the mass, stiffness and damping for each DOF, and its first natural frequency was 0.393 Hz in the 
elastic range. The nonlinear hysteresis incorporated into the numerical substructure, as shown in 
Figure 3, was set to decrease to one-half of the initial stiffness at the inter-storey drift δ1 (= 15 mm) 
and to one-tenth of the initial value at the inter-storey drift δ2 (= 30 mm). 

 
2.3 Test results 

Substituting the above-mentioned parameters {mp, cp, kp, m0n, m1n, k1n, c1n} into equation (17) as 
the linear model parameters, the input signal generated by NLSC to the transfer system was 
determined with the control law in equation (18) and the corresponding transfer functions shown 
below:  
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Here, the parameter b used in Ke was set to b = 18.75, based on the design of b = a/4. In addition, the 
parameter β was designed to be 100, based on the classic roots’ loci method. As a benchmark, Ke and 

d
K   were taken as the controller transfer functions of LSC. 

Substructuring tests based on NLSC and LSC were conducted with a Japan Meteorological 
Agency Kobe ground motion, which was recorded at the 1995 Kobe Earthquake. The amplitude of the 
ground motion was scaled to 30% of the original, due to the limitation of the maximum stroke in the 
actuator. In the substructured tests, LSC and NLSC maintained stability as shown in Figures 5(a) and 
6(a), and the maximum error between xn1 and xp was recorded as 0.5 mm with NLSC and 1.2 mm with 
LSC. Although NLSC generated more accurate responses than LSC, both methods were found to be 
entirely acceptable in experimentation.  

However, the substructured syntheses were based upon accurate values of the physical 
substructure parameters, although these parameters would in general be unknown in advance of a 
practical DSS test. Therefore, in practice, these parameters would be estimated only approximately. In 
order to demonstrate such a case, we also conducted a test using controller transfer functions based 
upon poor estimations of physical substructure’s parameters. A relatively extreme case was considered 
- the damping and stiffness terms in the physical substructure, kp and cp, were estimated to be ten times 
the originally identified values. Then, substituting {mp, 10cp, 10kp, m1n, m2n, k2n ,c2n} into equation 
(17), the signal generated by NLSC to the transfer system was determined as:  
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Figure 5. Substructured test with LSC, based on accurate estimation of the 
physical substructure parameters; (a) time history, (b) hysteresis. 

(a) (b) 

Figure 6. Substructured test with NLSC, based on accurate estimation of 
the physical substructure parameters; (a) time history, (b) hysteresis. 
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and b = 18.75 and β = 100; [1]. Again, Ke and d
K   were used as the controller transfer functions for 

LSC. 
Substructuring tests based on NLSC and LSC were conducted with the same ground motion as 

used in the first experiments. According to Figures 7(a) and 8(a), LSC failed to maintain stability in 
the case of the poorly estimated parameters, whilst NLSC was able to do so, achieving good responses. 

3. Conclusions 
The conclusions obtained in this work are now summarised in brief. NLSC was developed as a 

generalised form of LSC, based upon the NSBC method. Substructuring tests on a nonlinear 2DOF 
system with a rubber bearing and a nonlinear superstructure were implemented for the examination of 
NLSC. In the substructured test, where the properties of physical substructure were well known, 
NLSC and LSC achieved accurate output responses of the substructures, although the errors due to 
LSC were slightly larger than those of NLSC. However in the case of poorly estimated physical 
substructure parameters, LSC became unstable whilst NLSC achieved very acceptable results. 
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Figure 7. Substructured test with LSC, based on poor estimation of the 
physical substructure parameters; (a) time history, (b) hysteresis. 

Figure 8. Substructured test with NLSC, based on poor estimation of the 
physical substructure parameters; (a) time history, (b) hysteresis. 
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