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Abstract. Active vibration control has been widely used in many engineering applications in
order to minimise vibrations in structures, when subjected to broadband random disturbances.
Feedback control in the form of velocity feedback is considered in this paper, which generates a
damping force proportional to the velocity. The control gain is tuned in such a way to minimise
the kinetic energy of the system. In this paper, an inertial actuator excited by a random voltage
is considered and an active control is implemented. The dynamic equations of the system are
derived and the response is obtained with and without control. The stability of the system is
analysed using the Nyquist plot. The response of the actuator is obtained from time domain
simulations using Matlab. The effect of the control gains are also investigated on the responses.
Energy analysis shows how the energy in the system decreases by increasing the feedback gain
up to a stability limit.

1. Introduction

Vibrations may occur in structural dynamic as undesired consequence of certain operative
conditions and their effect can span from being a discomfort source up to damaging the whole
structure. Electromagnetic actuators can be implemented in structural dynamic for vibration
control purposes and enhancing system stability [1]. The objective of noise reduction through
electromagnetic transducers is to limit undesired vibrations applying an external force obtained,
in a straightforward solution, as a feedback control [2, 3]. Kinetic energy of the structure is
analysed as noise level index and its minimisation is pursued by means of an active damping
feedback control proportional to the plant local velocity [4, 5].

The amount of force available makes these devices act locally which suggests the use of multiple
actuators in centralised [3] and decentralised [6] configurations. Centralised control allows
selective mode control of the structure but it requires an accurate modelling of the response,
making the implementation complex and the design specifically customised for the system
analysed. Moreover, the control forces depend on the feedback of every signal from each unit,
therefore the disruption of even just a channel can lead to the instability of the whole system.
On the other hand, decentralised control is based on the independence of each unit and failure
of one of one unit does not affect the others. However, this approach is less selective and its
tuning is more complex.

Electromagnetic actuators can be implemented on a structure as devices reacting between the
plant and an external support [7] or as inertial actuators [8] self-supported by the structure.
The former ones need an external support to react off, thus they introduce less modifications in
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the plant dynamic allowing a robust and more straightforward control. The latter ones, instead,
introduce a more complex dynamic interaction given by the moving mass of the inertial actuator
with risk of instability, nevertheless they represent a more flexible solution.

Minimisation of the global plant kinetic energy provides valuable performance in terms of
vibration reduction [5], but it cannot be adopted when the information about the global
structure is not available such as in decentralised control. For this reason, alternative solutions
have been analysed to tune the feedback gain in such a way to obtain valuable results in
decentralised architectures. One possible solution when only local information are available
is the maximisation of energy absorbed by the transducers from the structure [9] and, as it has
been shown [4], for a single degree of freedom system with ideal constant velocity feedback gain,
it corresponds analytically to the minimisation of the kinetic energy.

This paper is structured in six main sections. Section 2 describes the mathematical model of a
general electromechanical inertial actuator, a velocity feedback control loop is then introduced
and kinetic energy is analysed. Section 3 presents the set-up adopted in the experiment which
has been used for the model identification discussed in Section 4. Finally, active control and
stability issue are analysed in Section 5.

2. Mathematical model

The electromagnetic inertial actuator can be described as a voice coil transducer [1], which
allows the transformation of energy between a mechanical and an electrical system. The device
consists of a permanent magnet with magnetic flux density B, and a coil of length [, free to
move axially within the gap.

Assuming B to be constant with respect to the axial coordinate, based on Faraday‘s law, a
voltage e is generated into the coil proportional to the velocity v of coil with respect to the
magnet,

e = —Blv. (1)

Secondly, according to the Lorentz force law, a force f, is generated between the coil and the
magnet as a current ¢ flows through the coil.

f. = Bli. 2)

Notice that, from Equations (1), (2) the first law of thermodynamic holds, i.e. there is equi-
librium between the mechanical power absorbed and the electrical power delivered and vice versa.

fev+ei=0. (3)
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Figure 1: Scheme of the SDOF inertial actuator.
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From the mechanical point of view, the transducer can be described as single degree of
freedom system with a moving mass m, a stiffness k& and a damping ¢, excited by a force from
the electrical system f. generated by the electromagnetic interaction as expressed in Equation
(2). Considering = and y as absolute displacements of the moving mass and of the base, the
dynamic equation of the system can be written as,

mi + c(x — y) + k(x —y) = Bli. (4)

On the other hand, in the electrical system, taking into account the inducted voltage from
Equation (1), a voltage u can be measured at the ends of the coil which is equal to

.
u:Bl(a'z—y)jLRei—l—Led—i, (5)

where R, and L. are the internal resistance and inductance of the loop.
The force transmitted to the ground f by the inertial actuator is proportional to the acceleration
of the moving mass.
f=—-mi. (6)

A two-port network analysis of the system can be performed [10], in which the force
transmitted to the ground f and the voltage applied u are evaluated with respect to the current
flowing through the coil and the velocity of the base g

f=Ti~ Zuy, (7)

u= Z.i+Tjy. (8)

where T', Z,,, and Z, are the transduction coefficient between the mechanical and the electrical
system, the mechanical impedance and the electrical base impedance respectively.

7, L.

Figure 3: Scheme of the inertial actuator with
Figure 2: Experimental set-up of the inertial velocity feedback control.

actuator “Data Physics IV40” fixed on
the test-rig through a force cell with an
accelerometer mounted on the moving part.

Assuming the system is linear, the Laplace Transform can be applied to Equations (4) and
(5) leading to the following set of equations for T', Z,, and Z.

—mBls?

T = """ 9
ms2 +cs+k’ (9)
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ms(cs + k)
g = ——— 10
" omsZfes+k (10)
s(Bl)?

Ze =R Le+ ———F—. 11
c e s 6+m32+cs+k (11)

From the Equations (7) and (8), the particular case in which the inertial actuator is grounded
can be derived. The forward transfer function M between the input voltage u and the moving
mass velocity & can be written, according to Equations (6), (7) and (8), as

X(s) Bls
M(s) = = . 12
(s) U(s) (ms?+cs+k)(Les+ Re) + (Bl)?s (12)
From Figure (3), a feedback control is added to the system with feedback transfer function
H which is constant and equal to a gain g. According to Figure (4), the closed-loop transfer

function Y in the Laplace domain is then

M{(s)

¥ = T (13)
Uts M(s) Xy
H(s)

Figure 4: Scheme of the feedback control system.

Broadband excitation is considered as a general form of excitation for many practical
applications. Once the input is assumed to be stationary, the output will be in the same form.
Global kinetic energy Ej, can be analysed as an index of the dynamic behaviour of the system.
As the energy tends to infinity, the time window considered of length T increases and the average
value is analysed

_ 1 [V

Ey =~ —md?*(t)dt. 14

e [, 50 (14)

According to Parseval’s theorem, Equation (14) can be written in the frequency domain as
S D Y SR

Ep=gm lim = [ |X(f)[df, (15)

o0 —o0

where X (f) is the Fourier Transform of the velocity signal & (t).
Finally, if ergodicity of the input signal is assumed, the Expected value of the signals can be
analysed leading to

Bo=tm [ Saa(h)df = 2 [ 1M RSl ), (16)
2" | 2"
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where S;; and Sy, are the Power Spectral Density of the velocity & and input voltage u.
Considering a white noise as input, Sy, is constant and can be brought out from the integral so
that Equation (16) can be rewritten as

_ 1 00
Bi= ymSu [ M(DP (1)
According to Newland [11], the integral of Equation (17) can be solved with respect to g as,
() Ao
I= M(f)Pdf = ———, 18
| nppar = 52 (18)

where Ay, By and Bj are given in Table (1). As can be seen from the Equation (18), global
kinetic energy decreases as the control gain g becomes larger, proving the unconditional stability
of the system.

Table 1: Parameters of I in Equation (18)

Parameter Espression

Ao kR.(BI)
By kRe{ [(BI) + ¢R. + kL] (mRe + cLe) — kRemLe}
B kR.(mR. + cL¢)Bl

3. Experimental set-up
The experimental set-up is shown in Figure (2). An inertial actuator “Data Physics IV40” is
attached perpendicularly to the test-rig via a thin layer of adhesive wax. Consistently with
what has been presented in the mathematical model, the transducer is driven by a voltage
and moving mass dynamic and the force transmitted to the ground are analysed. Secondly, a
velocity feedback control is implemented which performance and stability are evaluated. Open-
loop transfer function analysis allows the parameters identification, then a comparison between
experimental and mathematical model of the closed-loop transfer function is presented.
Input signal u is provided from a Simulink® model through dSPACE® platform. Low-pass filter
is included after the digital to analogical (DA) conversion of the signal in order to avoid aliasing.
Finally, a power amplifier (Data Physics PA30E) magnifies the signal from the filter providing
energy to the inertial actuator.
An accelerometer, mounted on the moving part of the transducers, feeds-back the velocity of the
moving mass into the Simulink® model through a B&K type 2635 charge amplifier. Similarly,
the transmitted force signal from the load cell mounted in between the inertial actuator and the
test-rig is fed-back into the Simulink® by means of another charge amplifier.

The global transfer function G between the input voltage and the moving mass velocity is
considered in Equation (13) rather than M. Since G includes a DA conversion and a filter,
delay is introduced into the system [12], and the unconditional stability is no longer guaranteed.

4. Identification
Model parameters identification is performed driving the inertial actuator fixed to the ground
with an input voltage v and measuring the current ¢ and the force transmitted f.
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Figure 5: Scheme of the feedback control digital system.

From Equation (7), electrical base impedance Z, and transduction coefficient 7' can be obtained
as

_ F(s)
_U(s)
“= 1) (20)

From Equation (9), model identification is performed and a comparison with the
mathematical model is presented in Figures (7), (6). Table (2) shows the parameters used,
where the values in bold have been directly measured, while the values in italic come from the
identification.

From the analysis of T', if the system is not highly damped, natural frequency f,, and damping
ratio £ of the mechanical system are known from the resonance peak, instead the voice coil
coefficient Bl is the horizontal asymptote. According to Figure (7), natural frequency f,, occurs
around 40 Hz, where the force transmitted to the ground per unit of current has a maximum.
For exciting frequencies below the resonance, low-magnitude and in-phase force is generated,
while above the resonance a constant force is provided in phase opposition, thus the inertial
actuator can be seen as an high-pass filter which, at high frequencies, behaves as an ideal force
generator.

On the other hand, the electrical parameters can be obtained from the electrical base impedance
Z.. Below the resonance, the frequency response can be considered equal to the internal
resistance R, that can be also directly measured. The oblique asymptote at high frequency,
instead, is equal to the internal inductance of the coil L.. According to Figure (6), it can be
noticed that a peak is present around the natural frequency due to the coupling of the electrical
system with the mechanical part.



MOVIC2016 & RASD2016 IOP Publishing

Journal of Physics: Conference Series 744 (2016) 012028 doi:10.1088/1742-6596/744/1/012028
< 20 < 50
- /| -~ »
T 18} / o s T
@ - ‘P |
E 16 I ' 111&""“';“#" 1 E
N == —-50 : :
N =

10t 10° 10° — 10 10° 10°
90 : - O meem
N s el 2 \
% 0 ———\-—————-—-mﬂﬂuuuul g -90 ‘

)

E 90 & _180 | \-&h—-—n“mmwﬂmw:

10t 10% 10° 10" 107 10°

f [Hz] f [HZ]

Figure 6: Comparison between analytical Figure 7: Comparison between analytical
(dash-dotted blue) and experimental (dotted (dash-dotted blue) and experimental (dotted
red) bode diagram of the electrical base red) bode diagram of the transduction
impedance Z.. coefficient T'.

Table 2: Parameters of the electromagnetic inertial actuator DataPhysics 1V40

Parameter Value  Unit
Moving mass (m) 1.35 kg
Natural frequency (f,) 40 Hz
Damping ratio (&) 0.06 -

Voice coil coefficient (Bl) 5.6 NA-!
Electrical resistance (R.) 1.7 Q
Electrical inductance (L.)  0.298 mH

5. Active control experiments

The moving mass velocity of the inertial actuator is analysed with respect to a voltage input
as forward transfer function M of the mathematical model introduced. According to Equation
(12), a comparison between experimental results and analytical model is presented in Figures
(8a) and (8b).

Closed-loop stability of the system presented in (13) can be evaluated through the Nyquist
plot in Figure (8b). Instability occurs when the open-loop transfer function M H cross the point
(-1,0) on the Nyquist plot. As can be seen, considering a constant feed-back transfer function
H = g, the system is unconditionally stable for any positive value of the feedback gain.
However, if the control is performed through the Simulink® model as presented above, global
transfer function G has to be considered rather than M, which allows describing the digital
system generated. As shown in Figure g), according to Franklin [12], a sampled and quantized
voltage u* is converted by the dSPACE® in an analogical signal with a phase delay proportional
to the sampling frequency which, in this work, has been set at 10 kHz. Analogical low-pass
filter has been then implemented to avoid aliasing for frequencies above the Nyquist frequency,
i.e. half the sampling frequency. In order to minimise the delay introduced by the filter, the
pass-and frequency has been set at 4 kHz. Finally a power amplifier has been introduced, with
a linear response in the frequency range considered which allows describing it as a simple gain
being the phase delay negligible.
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Figure 8: Bode diagram (a) and Nyquist plot (b) comparison between analytical (dash-dotted
blue) and experimental (dotted red) results of the forward transfer function M.

As shown in Figure (9a), a larger delay at high frequencies with respect to M is present mostly
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Figure 9: Bode diagram (a) and Nyquist plot (b) comparison between analytical (dash-dotted
blue) and experimental (dotted red) results of the global forward transfer function G.

due to the presence of the filter and the DA converter. Differences between mathematical and
experimental results are due to the filter idealisation.

As clarified in Figure (9b), high frequency delay causes the system to be not unconditionally
stable, thus a maximum gain can be defined. Figure (10) shows a comparison between
mathematical model and experimental results of the closed-loop transfer function Y. A
decrement of moving mass velocity can be noticed as the control gain g increases, while instability
at higher frequencies rises.

Global kinetic energy can be evaluated both numerically and experimentally from Figure (10)
as integral of the area underneath the closed-loop transfer function Y. As shown in Figure (11),
the moving mass global kinetic energy decreases as the control gain g is increased. Furthermore,
a comparison is proposed with the analytical results presented in Equation (18). The difference
between results is due to the fact that mathematical model is unconditionally stable and it takes
into account all the frequency domain whereas in the experimental and numerical model just a
finite frequency range can be considered.
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Figure 10: Analytical (a) and experimental (b) bode diagram of the closed-loop transfer function
Y for different values of g: 0% (dash-dotted blue), 5% (dotted red), 10% (dashed black), 25%
(dotted cyan), 50% (dotted magenta), 75% (dash-dotted green)., 90% (dashed blue).
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Figure 11: Comparison between analytical (dash-dotted blue) and experimental (dotted red)
global kinetic energy of the controlled SDOF with respect to the feedback control gain.

6. Conclusions and future work

This paper presents experimental and analytical results of a velocity feedback control loop of an
inertial actuator driven by an input voltage source. Unconditional stability of the mathematical
model is proved and conditional stability of the digital system is analysed pointing out the
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maximum gain value.

The formulation presented in this paper can be exploited to investigate structural dynamic
problems such as control of structures where inertial actuators can be introduced to minimise
global kinetic energy of the plant. Active control can be obtained tuning the feedback gain in
such a way to maximise energy absorption but instability issues need to be taken into account.
For future work, active control of a thin plate will be considered with decentralised control
strategies in which multiple inertial actuators will be considered and the system stability will
be investigated.
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