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Abstract. Inertial actuators are devices typically used to generate the control force on a vibrating 

structure. Generally, an inertial actuator comprises a proof-mass suspended in a magnetic field. 

The inertial force due to the moving mass is used to produce the secondary force needed to 

control the vibration of the primary structure. Inertial actuators can show nonlinear behaviour, 

such as stroke saturation when driven at high input voltages. If the input voltage is beyond their 

limit, they can hit the end stop of the actuator casing and saturate. In this paper, the force 

generated by an inertial actuator is measured experimentally and numerical simulations of a 

linear piecewise stiffness model are carried out and compared with the results of analytical 

methods. First, a numerical model for a symmetric bilinear stiffness is derived and a parametric 

study is carried out to investigate the change of the end stop stiffness. In addition, the variation 

of the amplitude of the excitation is considered and a comparison is made with the analytical 

solution using the harmonic balance method. Finally, experimental measurements are carried out 

and the results are compared with simulated data to establish the accuracy of the model. 

1.  Introduction 

Research and engineering development are moving onto lightweight, flexible and smart mechatronic 

structures which are required to perform multiple tasks such as reducing unwanted vibrations, shape 

morphing, adaptability to varying environmental conditions and structural health monitoring. The nature 

of these structures such as low weight and high flexibility lead them to operate in an environment where 

their dynamic behaviour cannot be neglected [1]. As a result, these structures are susceptible to large 

amplitudes of vibration. The use of passive vibration control typically adds mass to the structures, while 

the constraints are low weight and flexibility. Hence the use of active control devices such as Active 

Damping Devices (ADDs) have been used to control vibrations using inertial actuators [2, 3]. 

The purpose of the ADDs is to add a certain quantity of viscous damping into the structure in order 

to reduce its level of vibration in particular in the regions of its resonances. ADDs are non-intrusive 

because they can be attached to an existing structure without any structural modifications, they do not 

need an external mechanical connection hence the static behaviour of the structure does not change, and 

they have a wide frequency bandwidth of operation so they can reduce the vibration at several modes of 

the structure [4], moreover they are suitable for lightweight, flexible structures due to their relatively 

large force-to-weight ratio [5].  

An ADD consists of an inertial (or proof-mass) actuator attached to the structure, a collocated sensor 

of vibrations (usually an accelerometer) and a controller which feeds back the velocity of the structure 

to the inertial actuator. The aim of the inertial actuator is to provide an external control force to the 

structure for the purpose of vibration reduction. The way the proof-mass actuator operates is to use an 
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input voltage signal to generate (by means of an electromagnetic transducer) the control force on the 

structure and reacting against a proof-mass, which starts to accelerate [3, 6].  

In practical applications, the displacement that the proof-mass can reach is subjected to the stroke 

length between the end-stops or the dimensions of the actuator casing. For high input voltages, the proof-

mass will hit one of the end-stops, hence saturates in the displacement and imparts large shock to the 

structure [7]. This phenomenon is undesirable in terms of the stability of the closed loop control system, 

because it can reduce the stability margin. In particular, Baumann et al. [8] modelled a proof-mass 

actuator, which behaves as a linear single degree of freedom (SDOF) system for displacements of the 

proof-mass lower than the stroke length, and the spring stiffness becomes very large when stroke 

saturation occurs. They have shown that the instability is due to the fact that the velocity of the structure 

and the impulse force are in phase when stroke saturation happens, hence it reduces the overall damping 

of the system. Recently, Wilmshurst et al. [9] has conducted an experimental investigation on a stroke 

saturating inertial actuator, measured its blocked force and estimated the parameters for a bilinear 

asymmetrical model of the restoring force of the actuator in order to simulate the response of the system 

and compare the simulated force signals with the experimental data. 

In this study, a theoretical model of a stroke saturating inertial actuator with a symmetrical linear 

piecewise model of the restoring force is assumed. The blocked force of the actuator is then calculated 

with both analytical and numerical methods when it is driven by a step sine input voltage and the results 

are presented in the form of time histories and first-order frequency response function (FRF). A 

comparison with experimental measurements is also carried out. Section 2 covers the dynamic behaviour 

of a stroke saturated inertial actuator with the numerical simulations, parametric studies, and the 

comparison between the numerical and the analytical solutions. Section 3 outlines the experimental tests, 

while conclusions and suggestions for future work are summarized in section 4. 

2.  Dynamic behaviour of inertial actuators 

An inertial actuator is a control device used to generate the secondary force on a structure to minimize 

its vibration level. This type of actuator is named inertial or proof-mass actuator because of the way it 

creates a force by reacting against an inertial mass. Its main components are a magnetic proof-mass, a 

fixed coil and a suspension, which connects the proof-mass with the actuator casing. Its operating 

principle is to convert electrical power into mechanical power exploiting the Lorentz force law for a 

current passing through a coil exposed to a uniform magnetic flux [3]. 

 

Figure 1. A scheme of an inertial actuator with 

stroke limit. Stroke saturation makes the stiffness 

nonlinear. 
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One limitation for an inertial actuator is that, for practical applications, the stroke length of the proof-

mass is finite. This is a problem when there is a need to control low-frequency vibrations, which require 

a very long stroke length. If the stroke length is exceeded an impact occurs between the   proof-mass 

and the actuator casing, creating a destabilizing control force to the structure [7]. In order to understand 

the dynamic behavior of an inertial actuator accounting for stroke saturation, a model is created using a 

lumped parameter system as shown in Figure 1. Referring to Figure 1, the dynamics of the proof-mass 

actuator can be defined as a SDOF oscillator plus a force generator acting between the inertial mass and 

the actuator casing. The equation of motion for this model is given as: 

 𝑚𝑝𝑥̈(𝑡) + 𝑐𝑝𝑥̇(𝑡) + 𝑓𝑆(𝑥) = 𝑓𝑎(𝑡) (1) 

where 𝑚𝑝 is the proof-mass of the inertial actuator, 𝑐𝑝 is the linear damping parameter associated 

with the proof-mass suspension and 𝑓𝑎(𝑡) is the electromagnetic force generator, which applies equal 

forces (equal in modules but opposite in directions) onto the proof-mass and the actuator casing and 

hence to the structure. 𝑥(𝑡) denotes the displacement of the proof-mass, while 𝑓𝑆(𝑥) represents the 

nonlinear restoring force of the system, since the stiffness varies depending on the value of the 

displacement 𝑥(𝑡). In this study, the stroke saturation phenomenon has been modeled as an elastic 

collision between the proof-mass and the actuator casing in both directions, assuming an equilibrium 

position of the proof-mass centered between the two end-stops. In this way the model can be seen as a 

linear SDOF system for displacements lower than the stroke length, and as a nonlinear system with a 

stiffness added to the model, while stroke saturation occurs. In Figure 1, the impact stiffness 𝑘𝑆 can be 

found from, 

 𝑘𝑆 = 𝑘𝑁𝐿 − 𝑘𝑝 (2) 

where 𝑘𝑝 is the linear stiffness parameter associated with the proof-mass suspension and 𝑘𝑁𝐿 the 

stiffness of the overall model for displacements which exceed the stroke length. Referring to Figure 1, 

the equation of motion for the stroke saturated system can be written, for example for positive 

displacement above the stroke length 𝑥0 as, 

 𝑚𝑝𝑥̈(𝑡) + 𝑐𝑝𝑥̇(𝑡) + 𝑘𝑁𝐿(𝑥(𝑡) − 𝑥0) + 𝑘𝑝𝑥0 = 𝑓𝑎(𝑡) for 𝑥 > 𝑥0 (3) 

where the term 𝑘𝑝𝑥0 is due to the restoring force until stroke saturation occur and 𝑘𝑁𝐿(𝑥(𝑡) − 𝑥0) is 

the elastic force during the impact between the proof-mass and the end stop. In general, the restoring 

force for such a model can be written as: 

 

𝑓𝑆(𝑥) = {

𝑘𝑁𝐿(𝑥 − 𝑥0) + 𝑘𝑝𝑥0,

𝑘𝑝𝑥,                              

𝑘𝑁𝐿(𝑥 + 𝑥0) − 𝑘𝑝𝑥0,

       

𝑥 > 𝑥0

|𝑥| ≤ 𝑥0

   𝑥 < −𝑥0

 (4) 

The values of 𝑘𝑁𝐿 are shown in relation to the value of the suspension stiffness 𝑘𝑝 as follow, 

 𝑘𝑁𝐿 = 𝛼𝑘𝑝 (5) 

where 𝛼 is a multiplying coefficient. Before moving onto the nonlinear behavior of the inertial 

actuator, the dynamics of the underlying linear system is investigated. Equation (4) is also represented 

in Figure 2 for several values of the impact stiffness, taking into account equation (5), so the nonlinearity 

has been modeled as a symmetric piecewise linear stiffness. 

Combining equations (1) and (4) for the case of |𝑥| < 𝑥0, and taking the Laplace transform with 

initial conditions set  to zero leads to: 

 [𝑚𝑝𝑠2 + 𝑐𝑝𝑠 + 𝑘𝑝]𝑋(𝑠) = 𝐹𝑎(𝑠) (6) 

The transfer function between the displacement of the proof-mass and the generator force is: 

 𝑋(𝑠)

𝐹𝑎(𝑠)
=

1

𝑚𝑝𝑠2 + 𝑐𝑝𝑠 + 𝑘𝑝
=

1

𝑚𝑝(𝑠2 + 2𝜁𝑝𝜔𝑝𝑠 + 𝜔𝑝
2)

 (7) 

where 𝜔𝑝 = √
𝑘𝑝

𝑚𝑝
 and 𝜁𝑝 =

𝑐𝑝

2√𝑘𝑝𝑚𝑝
 are the natural frequency and the damping ratio of the system 

respectively. 
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Figure 2. Restoring force for several values of the impact 

stiffness, from the linear case (large blue line) to strong 

nonlinear case (thin black line). 

To determine the inherent dynamic behavior of the inertial actuator, a rigid and nonmoving 

supporting structure is attached to the actuator base hence the dynamics of such supporting structure can 

be ignored. The blocked force imparted by the actuator to the structure can be calculated for different 

values of the input voltage from the force generator. The total applied force to the structure, the blocked 

force 𝑓(𝑡), can be expressed as: 

 𝑓(𝑡) = 𝑐𝑝𝑥̇(𝑡) + 𝑓𝑆(𝑡) − 𝑓𝑎(𝑡) = −𝑚𝑝𝑥̈(𝑡) (8) 

Taking the Laplace transform yields: 

 𝐹(𝑠) = −𝑠2𝑚𝑝𝑋(𝑠) (9) 

The equation governing the force generator can be taken for simplicity as: 

 𝑓𝑎(𝑡) = 𝑔𝑣(𝑡) (10) 

where 𝑣(𝑡) is the input voltage and 𝑔 is a gain term that is determined by the product of the 

electromagnetic gain of the proof-mass actuator’s coil (in 𝑁/𝐴) and a power amplifier gain (in 𝐴/𝑉). 

The power amplifier gain has been included in 𝑔 in order to simplify the comparison between simulated 

and measured data. Taking into account equations (7), (9) and the Laplace transform of equation (10), 

the transfer function between the blocked force of the inertial actuator and the input voltage signal can 

be written as, 

 𝐹(𝑠)

𝑉(𝑠)
=

𝐹(𝑠)

𝑋(𝑠)

𝑋(𝑠)

𝐹𝑎(𝑠)

𝐹𝑎(𝑠)

𝑉(𝑠)
= −𝑔

𝑠2

𝑠2 + 𝑖2𝜁𝑝𝜔𝑝𝑠 − 𝜔𝑝
2 (11) 

Assuming a harmonic excitation, hence substituting 𝑠 = 𝑖𝜔 in equation (11), leads to the frequency 

response function (FRF) between the blocked force and the input voltage, 

 
𝐹(𝑖𝜔)

𝑉(𝑖𝜔)
= 𝑔

(
𝜔
𝜔𝑝

)2

1 + 𝑖2𝜁𝑝
𝜔
𝜔𝑝

− (
𝜔
𝜔𝑝

)2
 (12) 

The FRF magnitude and phase plots for the system described by the parameters given in Table 1 is 

shown in Figure 3. 

Table 1. Lumped parameters of the actuator obtained from the Micromega Dynamics Catalogue [4] 

and from [9]. 

Parameter 𝑚𝑝 [𝑘𝑔] 𝑐𝑝 [𝑁𝑠/𝑚] 𝑘𝑝 [𝑁/𝑚] 𝑔 [𝑁/𝑉] 𝑥0 [𝑚𝑚] 

Value 0.032 1.36 105 0.3 1 
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It should be noted that for frequencies above the natural frequency of the proof-mass actuator, the 

blocked force tends to be equal to the output of the force generator that is 𝑔 times the input voltage 

signal. For example the blocked force is 0.3 𝑁 for this particular actuator, when the input voltage  𝑉0 =
1𝑉. 

 

Figure 3. Theoretical FRF (magnitude and phase) between 

the force 𝐹(𝑖𝜔) and the voltage 𝑉(𝑖𝜔) using equation (12). 

If the inertial actuator is driven by a large input voltage, stroke saturation may occur, and its 

behaviour becomes nonlinear and cannot be described by equation (12) since the response depends on 

the amplitude of excitation. It is however possible to construct FRFs for nonlinear systems using other 

methods such as harmonic balance method. The important thing is to define the type of input excitation 

because a nonlinear system responds to them in different ways (i.e. different FRFs). In this study a 

stepped sinusoidal excitation is chosen. The approach used in this study to approximate the FRF of the 

nonlinear model of the proof-mass actuator is the harmonic balance method [10]. The aim of this method 

is to assume that the response is sinusoidal at the same frequency of the input excitation. The equation 

of motion (1) is linearized and in particular the restoring force (4) is written as, 

 𝑓𝑆(𝑥) ≃ 𝐾𝑒𝑞𝑥 (13) 

where 𝐾𝑒𝑞 is an equivalent stiffness for a given operating condition. With this approximation a first-

order FRF for the linearized system between the input phase-shifted excitation                    𝑓𝑎(𝑡) =
𝐹𝑎sin (𝜔𝑡 − 𝜙) and the trial solution  𝑥(𝑡) = 𝑋𝑠𝑖𝑛(𝜔𝑡) can be obtained, 

 𝑋(𝑖𝜔)

𝐹𝑎(𝑖𝜔)
=

1

𝐾𝑒𝑞 − 𝑚𝜔2 + 𝑖𝑐𝜔
= Λ(𝜔, 𝑋) (14) 

where Λ(𝜔, 𝑋) denotes the first-order FRF of the nonlinear system, which is amplitude dependent. 

Expanding a Fourier series equation, for the trial solution 𝑥(𝑡) = 𝑋𝑠𝑖𝑛(𝜔𝑡), considering only the 

fundamental terms and noting that the restoring force is an odd function (as widely explained in [10]), 

results in, 

 
𝐾𝑒𝑞 =

𝑏1

𝑋
=

1

𝜋𝑋
∫ 𝑑𝜃 𝑓𝑆(𝑋 sin(𝜃)) sin(𝜃)

2𝜋

0

 (15) 

where 𝑏1 is the fundamental sine term of the Fourier transform and 𝜔𝑡 has been replaced by: 

 𝜃 = 𝜔𝑡 (16) 

It should be noticed that the integrand of equation (15) changes two times during one cycle of 

oscillation if |𝑋𝑠𝑖𝑛(𝜔𝑡)| exceeds 𝑥0. This can be substituted by an angle 𝜃0 = 𝜔𝑡0 during the cycle, 

where: 

 𝜃0 = sin−1 (
𝑥0

𝑋
) (17) 
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Than for 𝜃 = 𝜋 − 𝜃0 the integrand switches back. This happens for the first half cycle and due to the 

symmetry of the restoring force, the same switching happens for the second half of the cycle. Equation 

(15) can thus be rewritten as: 

 
𝐾𝑒𝑞 = 𝑘𝑝 +

(𝑘𝑁𝐿 − 𝑘𝑝)

𝜋
[∫ 𝑑𝜃 sin(𝜃) (sin(𝜃) −

𝑥0

𝑋
)

𝜋−𝜃0

𝜃0

+ ∫ 𝑑𝜃 sin(𝜃) (sin(𝜃) +
𝑥0

𝑋
)

2𝜋−𝜃0

𝜋+𝜃0

] 

(18) 

hence 𝐾𝑒𝑞 is the mean value of the stiffness experienced by the system over one cycle. Simplifying 

equation (18) a final form for 𝐾𝑒𝑞 is achieved, which is: 

 
𝐾𝑒𝑞 = 𝑘𝑝 {1 +

(𝛼 − 1)

𝜋
[𝜋 − 2 sin−1 (

𝑥0

𝑋
) − 2

𝑥0

𝑋2
√𝑋2 − 𝑥0

2]} (19) 

𝐾𝑒𝑞 is the describing function, which depends on the amplitude of the response 𝑋. The change of the 

resonant frequency of the nonlinear system with 𝑋 can be obtained from equation (19). The non-

dimensional parameter 𝛽 is considered as, 

 
𝛽2 =

𝜔𝑟𝑒𝑠,𝑁𝐿
2

𝜔𝑝
2 =

𝐾𝑒𝑞

𝑘𝑝
 (20) 

An easier interpretation can be established by means of equation (20), which is plotted in Figure 4 

for several 𝛼. Indeed, as the response amplitude increases until the end-stop of the inertial actuator (𝑥0 =
1 𝑚𝑚), the system is linear with stiffness 𝑘𝑝 and    𝛽 = 1. If |𝑋| increases more than 𝑥0 then a hardened 

stiffness is encountered and 𝛽 increases with 𝑋. 

 

Figure 4. Variation in resonant frequency with excitation 

level for system with restoring force as in Figure 2. 

Combining equation (19) with equation (14), the first-order FRF for the nonlinear system of Figure 

1 can be written as: 

 
Λ(𝜔, 𝑋) =

1

𝑘𝑝 {1 +
(𝛼 − 1)

𝜋 [𝜋 − 2 sin−1 (
𝑥0
𝑋 ) − 2

𝑥0

𝑋2 √𝑋2 − 𝑥0
2]} − 𝑚𝑝𝜔2 + 𝑖𝑐𝑝𝜔

 
(21) 

Implicit equation (21) does not permit to plot the first-order FRF straightly, instead it is rewritten as 

a homogenous equation, which can be solved by iteration. 

In this study the 𝑋 values of such an equation have been found out using the MatLab nonlinear 

equation solver fzero for given values of the frequency 𝜔 and the input force 𝐹𝑎. Then the first-order 

FRF of the blocked force to the input voltage is derived combining equation (21) with equations (9) and 
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(10). The resultant FRFs for different values of 𝛼 are plotted in Figure 8 and compared with those 

resulting from the method of numerical time integration of equation of motion, which is a common 

solution procedure for nonlinear vibration problems. 

The method of numerical integration of equation of motion gives a time domain solution for the 

response of the system excited by a stepped sine excitation that must be post-processed with an 

expansion in terms of Fourier series to obtain the first-order FRF. In an orderly manner, the second order 

equation of motion (1) is written in state-form as follow: 

 𝐱̇ = 𝐀𝐱 + 𝐁𝑓𝑎 (22) 

where 𝐱 is the state vector which contains the state variables, 𝐀 is the state matrix and 𝐁 the input 

vector. Accordingly to equations (1), (4) and (22) the state-space formulation can be entirely written as 

follow: 

 

{
𝑥̇1

𝑥̇2
} = [

0 1

−
𝑘

𝑚𝑝
−

𝑐𝑝

𝑚𝑝

] {
𝑥1

𝑥2
} + [

0
1

𝑚𝑝

] 𝑔𝑣(𝑡) + [

0
(𝑘 − 𝑘𝑝)

𝑚𝑝

] 𝑥0sign(𝑥1(𝑡)) (23) 

where the stiffness 𝑘 is given by: 

 
{
𝑘 = 𝑘𝑝  ,

𝑘 = 𝑘𝑁𝐿,
   

|𝑥| ≤ 𝑥0

𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒
 (24) 

The state-space equation has been solved by numerical integration using the MatLab function ode45 

with fixed time steps over a period of 800 seconds and a sample rate of 20 𝑘𝐻𝑧. Every ten seconds an 

increasing step applies to the sine excitation frequency. The time history of the blocked force is given 

by differentiating the solution of the numerical integration for the velocity of the system and 

consequently applying equation (8) to the calculated acceleration. Figure 5 and Figure 6 show the time 

histories of the blocked force for the underlying linear system and the nonlinear system respectively. 

 

 

 

Figure 5. Time history of the blocked force 

simulated for a stepped sine input signal, 

increasing of 1 𝐻𝑧 every 10 seconds, for the 

underlying linear system. 

 
Figure 6. Time history of the blocked force 

simulated for a stepped sine input signal, 

increasing of 1 𝐻𝑧 every 10 seconds, for the 

nonlinear system. 

In Figure 5 the behavior of the inertial actuator is linear, so the maximum force is reached at the 

resonant peak and then the output force is constant for higher values of the frequency. Figure 6 shows a 

different behavior for the firsts 150 seconds due to the importance of the nonlinear effects at low 

frequencies. In this case stroke-saturation phenomenon occurs resulting in higher values of the blocked 

force when compared with the values of the linear case. 
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(a) 

 

(b) 

 

Figure 7. Waveforms of the simulated blocked force: (a) the input signal frequency is 14 𝐻𝑧; (b) 

the input signal frequency is 20 𝐻𝑧. 
The impulses due to the impact between the proof-mass and the end-stops are shown in Figure 7(a). 

Every peak corresponds to the proof-mass colliding with the actuator casing and then rapidly increasing 

the blocked force. For higher frequencies the proof-mass does not saturate and there is no distortion in 

the waveform, as it is shown in Figure 7(b). 

The previous simulation has been repeated with a longer signal for every frequency step (50 seconds) 

and every transient has been removed for the steady-state responses. The first-order FRF in this case is 

obtained by applying the Fourier series to the blocked force steady-state signal: 

 
𝑓(𝑡) =

𝑎0

2
+ ∑ [𝑎𝑛 cos (

2𝜋𝑛𝑡

𝑇𝑝
) + 𝑏𝑛 sin (

2𝜋𝑛𝑡

𝑇𝑝
)]

∞

𝑛=1

 (25) 

Considering only the fundamental terms 𝑎1 and 𝑏1, which are given by: 

 
𝑎1 =

2

𝑇𝑝
∫ 𝑑𝑡 𝑓(𝑡) cos (

2𝜋𝑡

𝑇𝑝
)

𝑇𝑝

0
   and   𝑏1 =

2

𝑇𝑝
∫ 𝑑𝑡 𝑓(𝑡) sin (

2𝜋𝑡

𝑇𝑝
)

𝑇𝑝

0
 (26) 

The magnitude and phase of the first-order FRF are easily obtained considering the following 

relationships: 

 𝑀1 = √𝑎1
2 + 𝑏1

2   and   𝜙1 = tan−1(−
𝑏1

𝑎1
) (27) 

where 𝑀1 represents the magnitude of the response at the fundamental frequency and 𝜙1 is the phase 

shift at the same frequency. The effect of 𝛼 on the response of the actuator is investigated and the results 

are given in Figure 8 in terms of first-order FRFs. Figure 8 shows also a comparison between the 

harmonic balance method and the numerical integration of equation of motion. The increase of 𝛼 leads 

to an increase of the resonant frequency for a given value of the input excitation, as stated in Figure 4. 

The increase of 𝛼 also affects the magnitude of the peak of the first-order FRF. In particular the 

amplitude of the peak decreases when the value of the impact stiffness becomes larger. From Figure 8 

for 𝛼 ≠ 1 there is a jump of the magnitude in the FRF from high to low value. This happens both in 

magnitude and phase. Comparing the results given by harmonic balance method and those of numerical 

integration of equation of motion, there is very good agreement in the magnitude and phase of the FRF 

for lower values of 𝛼 while for high values of the impact stiffness the method of the harmonic balance 

gives a lower resonant frequency and a lower value of the magnitude of the resonant peak. 

The nonlinear behaviour of an inertial actuator for a given value of the impact stiffness and increasing 

values of the input voltage can be clearly seen in Figure 9 from numerical integration. The magnitude 

and phase of the FRF of the blocked force to the input voltage for several values of the amplitude of the 

excitation is shown. For small values of the input voltage, less than 0.3 𝑉, the system behaves as the 

underlying linear system of Figure 3, hence all the FRFs are obtained from the linear system. If the input 

voltage is increased more than 0.3 𝑉, both magnitude and phase of the FRF show nonlinear behaviour. 

This is due to the nonlinearity of the stroke saturation phenomenon. Indeed, an increasing of the input 

voltage results in an increasing of the resonant frequency of the nonlinear system, which can also be 

seen in Figure 4 for a given 𝛼 and an increasing response amplitude. Moreover, the resonant peaks 
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appear to increase in magnitude with the increase of 𝑉0. There is an explanation to this. If 𝑉0 is larger, 

the time which the system experiences stroke saturation is larger hence the mean value of the stiffness 

during one cycle becomes larger. Since the damping of the system is assumed to be always the same, it 

results that the damping ratio is lower for larger input voltages. The consequence is an higher resonant 

peak. 

 

 

 

Figure 8. Comparison between first-order FRFs 

obtained using numerical integration of state-

space (23) (solid lines) and harmonic balance 

method (dashed lines) for 𝑉0 = 0.5 𝑉 and 

different values of 𝛼. 

 
Figure 9. First-order FRFs using numerical 

integration of the state-space (23) for a given 

value of the impact stiffness (𝛼 = 100) and 

several values of the input voltage amplitude 𝑉0. 

Figure 9 also shows that for the first-order FRFs of the nonlinear system the blocked force after the 

resonant peak drops down suddenly both in magnitude and phase compared to the linear system FRF 

curve. This kind of behaviour also seen in the time domain response of Figure 6 and Figure 11, later on, 

for the experimental measurements, is called jump phenomenon. After the frequency of the jump, the 

stroke saturation does not occour and the system behaves as the underlying linear system. 

3.  Experimental tests 

Experimental measurements of the blocked force of an inertial actuator have been carried out using the 

following experimental setup, which is also shown in Figure 10. A Micromega Dynamics IA-01 inertial 

actuator (see [4]) is fixed at his base with a PCB Piezotronics 208C01 ICP force sensor, which is attached 

to a rigid clamped mass via wax (due to the small entire mass of the actuator and force sensor). The 

small value of the suspension stiffness of the proof-mass actuator required a horizontal positioning of 

such actuator in order to avoid the proof-mass ending to one end-stop in static conditions. The input 

signal is generated by dSpace 1103 through the ControlDesk Next Generation software and they are 

used also for data acquisition. The dSpace generated signal is amplified by a Micromega Dynamics 

Rack-04-45N which is connected then with the proof-mass actuator. The measured signal by the force 

cell is conditioned by a PCB Piezotronics 480E09 ICP sensor signal conditioner prior to entering a 

dSpace channel. 

Figure 11 shows a time history of the recorded signal of the blocked force where the actuator is 

excited by a stepped sine input voltage starting from 1 𝐻𝑧 and increasing of 0.1 𝐻𝑧 every 5 seconds 

until 20 𝐻𝑧 and then increasing of 1 𝐻𝑧 until 100 𝐻𝑧, using a sampling rate of 20 𝑘𝐻𝑧 and maintaining 

a constant amplitude of the input excitation 𝑉0. First the actuator is driven with low input voltages, under 

0.3 𝑉 and an approximately linear behaviour is obtained, which is similar to that of Figure 5 for the 

simulated time history. Then 𝑉0 is increased to 0.5 𝑉 in order to record the output signal while stroke 

saturation is occurring. In order to obtain the correct information from the input and output signal in 

terms of time histories, relative amplitudes and phase shifts, the dynamics of the instrumentations used 

are measured. All the instrumentations are used within the frequency and amplitude range reported in 
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the data sheets, hence their dynamics are assumed to be linear and time-invariant. The measurements of 

the FRFs of the power amplifier has been already done by Wilmshurst et al. [9] where they indicate a 

constant 11 𝑑𝐵 gain across the frequency range. The measurements on the signal conditioner and 

analogic/digital converter indicate a gain and a phase shift, which can be neglected in this frequency 

range. Finally the sensitivity of the force transducer, which is 112.410 𝑚𝑉 𝑁⁄  (from the data sheet) is 

guaranteed to be constant over the frequency range of interest. 

 

 

 

Figure 10. A picture of the experimental setup 

where is possible to distinguish the rigid mass, 

the force transducer and the inertial actuator 

placed in horizontal position. 

 
Figure 11. Time history of the blocked force 

measured for a stepped sine input signal 

increasing of 1 𝐻𝑧 every 5 seconds. 

The measured blocked force time history shown in Figure 11 has an importance to understand the 

nonlinear behaviour of the inertial actuator due to stroke saturation. Indeed at a certain time, which 

corresponds to a certain frequency, spikes start to appear as a result of the impact force between the 

proof-mass and the actuator casing. This phenomenon can be also clearly seen in Figure 12(a) for an 

input frequency of 12 𝐻𝑧. 

(a) 

 

(b) 

 

Figure 12. Waveforms of the measured blocked force: (a) the input signal frequency is 12 𝐻𝑧; (b) 

the input signal frequency is 20 𝐻𝑧. 
Over a certain frequency the spikes disappear, as is predicted from the simulations illustrated in 

Figure 6, resulting in the jump phenomenon. The system then behaves as a linear system and the 

waveform of the blocked force is sinusoidal, as shown in Figure 12(b). It should also be noticed that the 

time history of the blocked force is not symmetrical during the stroke saturation phase. In particular, the 

spikes are only on the upper side of the figure, which implies that the proof-mass saturates only with 

one end stop and doesn’t collide with the other one. This is due to an equilibrium position of the proof-

mass that is not centered within the actuator casing. Similar the numerical simulations, the frequency 

analysis is applied to the blocked force time histories in order to obtain the experimental first-order FRFs 
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of the blocked force to the input voltage. The coefficients of the fundamental frequency of the Fourier 

series are taken and combined in order to obtain the magnitude and phase shift, hence using equations 

(25), (26) and (27). Results are shown in Figure 13 for the underlying linear behaviour and the nonlinear 

behaviour when the actuator is driven with an input voltage of 0.5 𝑉. The experimental FRFs are also 

compared with those obtained by the simulation using the numerical integration of equation of motion 

approach. 

 

Figure 13. Comparison between FRFs obtained by the 

experimental data (blue continuous line) and using 

numerical integration of state-space (23) (red dashed line) 

with 𝛼 = 50 and 𝑉0 = 0.5 𝑉. 

The post-processed experimental data show (in Figure 13) the FRF for the system driven with low 

input voltages and a first-order FRF for the stroke saturating inertial actuator, which are similar to those 

obtained for the simulations. In particular there is a very good agreement between the experimental 

curve and the simulated for low amplitude of the input voltage which is the case of the underlying linear 

system. For large input voltage, stroke saturation occurs and the resonant peak of the measured FRF is 

shifted to higher frequency and also the magnitude of the resonant peak is increased. There is a good 

agreement with the first-order FRF of the simulation for the symmetric piecewise linear model of the 

inertial actuator and a noticeable discrepancy is due to a less pronounced jump phenomenon in the 

experimental FRF respect to that predicted with the simulations. 

4.  Conclusions and further work 

An analytical model of a nonlinear proof-mass actuator with a symmetric piecewise linear restoring 

force was derived using the harmonic balance method in order to obtain the first-order FRF of the 

blocked force to the input voltage excitation. Also a numerical model in the state-space was derived in 

order to have an insight into the time history of the output signal for a stepped sine excitation. The first-

order FRF was also obtained from the time histories applying the Fourier transform for the fundamental 

terms. The resulting FRFs of these two different approaches were compared for different values of the 

impact stiffness and a good agreement between the two for relatively small values of the impact stiffness 

was achieved. A major difference was in the resonant frequency and magnitude of the resonant peak 

when the impact stiffness becomes larger. A parametric study was done for the variation of the amplitude 

of the excitation. Experimental measurements were also carried out and both the time histories of the 

blocked force and the first-order FRF of the blocked force to the input voltage were compared to the 

results of numerical simulations. Although the model is a very simple symmetric piecewise linear model, 

it can describe the nonlinear behaviour fairly well and the results are in good agreement except for the 

asymmetry in the blocked force time history. Improvements will be made considering the asymmetrical 
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stiffness and also a more accurate damping model of the impact will be considered as part of the future 

work. 
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