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Abstract. In high speed automotive, aerospace, and railway transportation, the turbulent
boundary layer (TBL) is one of the most important sources of interior noise. The stochastic
pressure distribution associated with the turbulence is able to excite significantly structural
vibration of vehicle exterior panels. They radiate sound into the vehicle through the interior
panels. Therefore, the air flow noise becomes very influential when it comes to the noise
vibration and harshness assessment of a vehicle, in particular at low frequencies. Normally,
passive solutions, such as sound absorbing materials, are used for reducing the TBL-induced
noise transmission into a vehicle interior, which generally improve the structure sound isolation
performance. These can achieve excellent isolation performance at higher frequencies, but are
unable to deal with the low-frequency interior noise components. In this paper, active control of
TBL noise transmission through an acoustically coupled double panel system into a rectangular
cavity is examined theoretically. The Corcos model of the TBL pressure distribution is used
to model the disturbance. The disturbance is rejected by an active vibration isolation unit
reacting between the exterior and the interior panels. Significant reductions of the low-frequency
vibrations of the interior panel and the sound pressure in the cavity are observed.

1. Introduction
The interior noise in high speed vehicles is largely caused by the aerodynamic excitation of the
vehicle exterior skin panels. For example, the predominant contributor to the interior noise in
passenger aircraft at the cruise speed is the TBL [1, 2, 3]. The character of the TBL excitation is
such that it is random and broadband. Thus the disturbance comes in a wide range of frequencies
including the low-frequency range. Normally, the effectiveness of passive noise control methods,
such as sound absorbing materials, is limited to frequencies where the acoustic wavelengths are
short and thus the frequency is relatively large. As a rule of thumb, the thickness of sound
absorbing layers should be at least 1/4 of the acoustic wavelength. As a result, the passive
sound absorbing treatments consume too much space and weight if the sound transmission
control is to be extended to low frequencies. On the other hand, double leaf partitions may
be used whose transmission loss increases more rapidly with frequency than that of single leaf
partitions. Therefore, it is often the case that vehicles are equipped with additional interior
trim panels. Nevertheless, at frequencies below the mass-air-mass resonance, the transmission
loss of double leaf partitions is still rather poor. For these reasons, an interest has grown in
investigating into active methods for the control of low-frequency sound transmission through
double panels. Active control of sound transmission can be used both with deterministic and
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stochastic disturbances. Feedforward and feedback active control systems have been considered
in this sense. Although feedforward control methods are more easily applied for the control of
deterministic, tonal disturbances, it is also possible to use them to control stochastic noise.
This, however, requires that creative arrangements are used for obtaining reference signals
well correlated to the disturbance [4, 5]. Here a good balance between the causality margin
and the coherence between the reference and disturbance signals is essential [5]. Feedback
sound transmission control systems can be used instead, and some promising results have been
reported in the last decade [3, 6, 7]. In the feedback control it is often useful to collocate dual
sensor-actuator pairs in order to minimise or avoid the modelling effort. However, fully dual and
collocated sensor-actuator pairs are not straightforward to realise in practice. Nevertheless, some
very convincing collocated feedback control methods have been proposed for vibration isolation
in lumped parameter systems [8, 9, 10]. In this paper the active vibration isolation method,
sometimes referred to as ”skyhook damping” [8], is applied to control the sound transmission
through a double panel system into a model vehicle interior. It is shown in the paper that very
good low-frequency active sound transmission control can be realised using this approach, even
though only a single feedback loop has been considered. The paper is structured as follows. In
the second section, a brief outline of the mathematical model used to couple the aerodynamic,
control and vibroacoustic aspects of the problem is given. In the third section, the stability and
performance of the active control system is discussed on a reduced order model, whereas in the
fourth section a full-order model is considered.

2. Model Problem
The analytical model outlined in this section is used to predict the noise transmission through
an acoustically coupled double panel system into a rectangular cavity when an active vibration
isolation unit is used. The problem under analysis is physically given by the interaction of
an aerodynamic model, that represents the TBL pressure fluctuations on the structure, and a
structural-acoustic model, that gives the noise transmission and interior noise levels. The model
is thus similar to the problem of sound transmission into a vehicle interior.

2.1. Aerodynamic model
In a wide variety of experimental situations, it has been found that the flow near boundaries
can be modelled as stochastic fluctuations riding on a steady current. Therefore, mathematical
models of TBL wall pressure take the form of a statistical space-time correlation function, and
its corresponding Fourier transform or wavevector-frequency spectrum. Among the different
TBL models developed over the years [11], the Corcos’ one is the simplest empirical model
used to represent the wall pressure fluctuation of a TBL [12, 13]. In general, the wall pressure
field, generated by a fully developed TBL with zero mean pressure gradient, can be regarded as
homogeneous in space and stationary in time. For a flow in the x-direction over the (x, y) plane,
the spatial-cross spectral density CSD, according to Corcos, is given by

Ψpp(ζx, ζy, ω) = φ(ω)e−ikωζxe−|ζx|kωαx−|ζy |kωαy , (1)

where kω = ω/Uc is the convective wavenumber, given by the angular frequency ω and the
convective velocity Uc = 0.6U∞, and ζ ≡ (ζx, ζy, 0) is the spatial separation vector. The
longitudinal and lateral decay rates of the coherences, αx and αy respectively, are normally
chosen to yield good agreement with experiments [14]. In the following analysis, the external
flow properties used, including αx and αy, are identical to those defined by Rocha [15], in which
U∞ = 0.8c with c speed of sound. In Eq. (1), φ(ω) represents the single point wall-pressure
spectrum (i.e., auto-spectrum). It is given by a semi-empirical formula published by Goody [16]

MOVIC2016 & RASD2016 IOP Publishing
Journal of Physics: Conference Series 744 (2016) 012026 doi:10.1088/1742-6596/744/1/012026

2



Acoustic enclosure  

c2 

c1 cp 

v vpr 
x 

z 

y 

O 

U∞ 

- 
𝐿𝑐2𝑧

2
 

𝐿𝑐2𝑧 

𝐿𝑐1𝑧 

𝑎 = 𝐿𝑐𝑥  
ps 

pr 

fc -g 

Mic 

Figure 1. The model problem.
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Figure 2. Reduced order model.

as follows,

φ(ω) =
3 (δ/U∞)3 (ωτω)2[

(ωδ/U∞)0.75 + 0.5
]3.7

+
[(

1.1R−0.57T

)
(ωδ/U∞)

]7 , (2)

in which δ is the boundary layer thickness, RT is the Reynolds number dependent factor and τω
is the wall shear stress. Such a model compares well with experimental data over a large range
of Reynolds numbers [17].

2.2. Structural-acoustic model
In Fig. 1, the analysed model problem is shown. The model encompasses a cavity-backed
homogeneous double panel driven on one side by a stationary TBL, described in Eq. (1). Thus,
the acoustic enclosure, c2, filled with air, has five rigid walls and one flexible double wall. The
two flexible panels are acoustically coupled with the air in cavity c1 between them. As shown
in Fig. 1, the source panel is excited by the grazing flow. Its vibrations generate sound waves
which excite the radiating panel. Finally, the vibrations of the radiating panel generate sound
waves which are radiated to the acoustic enclosure c2. The active control approach in this
study is based on isolating the radiating panel from vibrations coming from the source panel
through an active vibration isolation unit. A sensor is placed in the centre of the radiating panel,
which is collocated to a reactive force actuator. The actuator generates the control force while
reacting against the source panel. In parallel to the actuator, a passive damper is mounted with
a damping coefficient cp, as seen in Fig. 1. In this paper, idealized sensor-actuator transducers
are considered, that is, the sensor-actuator internal dynamics are not taken into account. The
control force fc is made proportional to the negative velocity of the radiating panel, vpr , which
is measured by the velocity sensor, so that

fc = −gvpr , (3)

where g is the feedback gain. Its dimension is the same as that of the damping coefficient,
Nsm−1. Therefore, there are two damping coefficients, the active damping coefficient g and the
passive one cp. In order to model the structural-acoustic control problem at hand, the panel
displacements and acoustic enclosure pressures are calculated by coupling the wave equations
for the two cavities with the governing equations for the two panels [15, 18]. To this end, the
modal expansion method is used [15, 18]. Simply supported boundaries of the two panels, and
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rigid cavity walls are assumed. The rectangular coordinates (x, y, z) are chosen, z being normal
to the panel, and x in the direction of mean flow, as seen in Fig. 1. The pressure field on the
flow side of the plate consists of the sum of the turbulence pressure, ptbl(x, y, z, t), which would
be observed on a rigid wall and the pressure due to the contribution of the acoustic enclosure c1.
The influence of the panel vibration on the boundary layer is neglected, that is, a weak coupling
is considered [19]. The system is analysed by expanding the displacements of the source and
radiating panels and the pressure of the acoustic cavities in a series of characteristic functions,
that are in-vacuo modes of a simply supported plate and acoustic modes of a rigid rectangular
enclosure,

wi(x , y , t) =

Mxi ,Myi∑
mx,my

dimxmy
(t)ψimxmy

(x, y), (4)

with i = ps, pr for the source and radiating panel respectively, and

pc(x , y , z , t) =

Nxc ,Nyc ,Nzc∑
nx,ny ,nz

gcnxnynz
(t)Γcnxnynz

(x, y, z), (5)

with c = c1, c2 for the cavity of the double panel system and the back cavity respectively, as
shown in Fig. 1. The modal functions are defined as follows,

ψimxmy
(x, y) =

2√
aibi

sin(mxπx/ai)sin(myπy/bi), (6)

Γcnx nynz (x , y , z ) =
AnxAnyAnz√
LcxLcyLcz

cos(nxπx/Lcx)cos(nyπy/Lcy)cos(nzπz/Lcz), (7)

in which dimxmy
(t) and gcnxnynz

(t) are components of the displacements and pressure time
functions, respectively. The total number of plate modes is Mi = Mxi × Myi and for the
acoustics modes is Nc = Nxc × Nyc × Nzc . The plates have length a and width b; Lcx , Lcy and

Lcz are acoustic enclosure length, width and height, respectively. In Eq. (7), An equals to
√

2
when n 6= 0 and equal to 1 when n = 0. The matrix form of the coupled structural acoustic
system can be expressed, in the frequency domain, as [18]:

Y (ω) = H (ω)X (ω) , (8)

where

Y (ω) =


Dps (ω)
Gc1 (ω)
Dpr (ω)
Gc2 (ω)

 , X (ω) =


Ptbl (ω)

0
0
0

 ,

in which Di (ω), Gc (ω) and Ptbl (ω) are the frequency domain vectors of the displacements,
pressure and turbulence pressure, respectively. The frequency response matrix of the system is
given by H (ω),

H (ω) =


H11 (ω) Kpsc1 iωDpspr 0
−ω2Mc1ps H22 (ω) −ω2Mc1pr 0
iωDprps Kprc1 H33 (ω) Kprc2

0 0 −ω2Mc2pr H44 (ω)


−1

,

with

H11 (ω) = −ω2Mpsps + iωDpsps + Kpsps , H22 (ω) = −ω2Mc1c1 + iωDc1c1 + Kc1c1 , (9)
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H33 (ω) = −ω2Mprpr + iωDprpr + Kprpr , H44 (ω) = −ω2Mc2c2 + iωDc2c2 + Kc2c2 . (10)

The contributions of the passive damping force and the active damping force are contained in
H (ω) as follows,

Dpsps = diag [2ρtωmσ]ps + cpψ
2
psmxmy

, Dprps = −cpψpsmxmy
ψprmxmy

, (11)

Dpspr = − (g + cp)ψpsmxmy
ψprmxmy

, Dprpr = diag [2ρtωmσ]pr + (g + cp)ψ
2
prmxmy

, (12)

where ρ, t and σ are the density, thickness and structural damping ratio of the panels and ωm
are the natural frequencies of the panels. Since the TBL excitation is defined in terms of power
spectral density of the wall pressure, it is convenient to write the coupled system governing
equations in the power spectral density (PSD) domain,

SYY (ω) = H∗ (ω)SXX (ω)HT (ω) , (13)

where SXX (ω) is the PSD matrix of the random excitation, which includes the PSD matrix
of the TBL pressure; SYY (ω) is the PSD matrix of the plate displacements, SWWi (ω), and
the acoustic pressures, SPPc (ω), and the superscripts ∗ and T denote Hermitian and matrix
transpose, respectively. The PSD matrix of the TBL pressure is given by,

Stbl (ω) =

[∫∫ aps

0

∫∫ bps

0
ψpsmxmy

(x, y)ψpsmx ′my′
(x′, y′)Ψpp(ζx, ζy, ω) dxdx′ dydy′

]
. (14)

After some mathematical manipulations, the PSD functions of the plate displacement (and
velocity) and the acoustic enclosure pressure in a specific point inside the enclosure can be
defined,

Swwi (x1, y1, x2, y2, ω) =

M2
xi∑

mx1 ,mx2

M2
yi∑

my1 ,my2

ψimx1my1
(x1, y1)ψimx2my2

(x2, y2)SWW im1,m2
(ω) , (15)

Sppc (x1, y1, z1, x2, y2, z2, ω) =

N2
xc∑

nx1 ,nx2

N2
yc∑

ny1 ,ny2

N2
zc∑

nz1 ,nz2

Γcnx1ny1nz1
(x1, y1, z1)

× Γcnx2ny2nz2
(x2, y2, z2)SPP cn1,n2

(ω) .

(16)

Afterwards, the radiating body velocity PSD is given by

Svvi (x1, y1, x2, y2, ω) = ω2Swwi (x1, y1, x2, y2, ω) . (17)

3. Results with a reduced order model
In this section, the theoretical stability and performance analysis of the active control system
are carried out by using a simplified model. The simplified model is obtained by considering
only the first mode for each plate and each air cavity. Note that the first mode of each air
cavity corresponds to a zero resonance frequency. The resulting system then behaves exactly as
a two degree of freedom (DOF) model, which can be represented through equivalent coefficients
m1,m2, k1, k2, k3, as shown in Fig. 2. The equivalent coefficients can be directly calculated using
Eq. (8), but their derivation in this paper is omitted for brevity. Given that only zero frequency
mode is assumed for the two cavities, the pressures inside the cavities are uniform. Thus, the
stiffness of the air enclosed in c1 can be represented by stiffness k2, and the stiffness of the
air enclosed in c2 contributes to the stiffness k3. In the following section, the stability of the
feedback loop, shown in Fig. 2, is analysed using the Routh-Hurwitz criterion.
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3.1. Stability
The characteristic equation of the reduced order model shown in Fig. 2 is of the form:

A4s
4 +A3s

3 +A2s
2 +A1s+A0 = 0, (18)

with s = iω. The coefficients Ai, seen in Eq. 18, can be found, for example, in [9, 10]. The system
is stable if all roots of the characteristic equation have negative real parts. The Routh-Hurwitz
criterion can be used to verify this. According to this criterion, the necessary condition for the
stability is that all coefficients of the characteristic equation are positive. Additionally, all the
principal diagonal minors ∆i of the Hurwitz matrix must be positive. This results in a system
of inequalities, which can be solved for the active damping ratio ξ = g/cp by introducing the
following non-dimensional parameters:

µ =
m2

m1
, α =

(
Ω2

Ω1

)2

, β =

(
Ω3

Ω1

)2

, η =
cp

2
√
k1m1

, (19)

where Ω1 =
√
k1/m1, Ω2 =

√
k2/m2 and Ω3 =

√
k3/m2, µ is the mass ratio, α and β are the

frequency ratios and η is the passive damping ratio. Here, the stability of the system is found to
substantially depend on the frequency ratio β. In case β > 1, the system is stable if the active
damping ratio is between two bordering values given by

ξ1,2 = −
α (1 + µ) + 1− β ∓

√
(1 + µ)2 α2 − 2α (β − 1) (µ− 1) + (β − 1)2

2α
. (20)

This is because, as shown in Fig. 3, all principal diagonal minors ∆i are positive if ξ1 > ξ > ξ2.
On the contrary, if β < 1 then the system is stable for any ξ > ξ1, as shown in Fig. 4. The
property of the systems corresponding to Fig. 3 -4 are shown in Table 1. The variations of the
frequency ratio β is accomplished by changing the thicknesses of the two panels. Note that in
both cases it is the fourth principal diagonal minor ∆4, characterised by a quadratic dependence
on ξ, that governs the system stability. In conclusion, the range of stable feedback gains is found
as follows:

∀β > 1, ξ1 > ξ > ξ2, (21)

∀β < 1, ξ > ξ1. (22)

Table 1. Model properties.

Plate length a (m) 0.4 Cavity length Lcx (m) 0.4

Plate width b (m) 0.3 Cavity width Lcy (m) 0.3

Plate Elasticity Modulus E (GPa) 100 Cavity height Lc1z (m) 0.038

Plate density ρ (kg m−3) 2380 Cavity height Lc2z (m) 0.4

Plate Poisson’s ratio ν 0.33 Acoustic damping ratio σac 0.05

Air speed of sound c0 (m s−1) 343 Internal air density ρ0 (kg m−3) 1.19

Plate thickness tps (m) 0.002 (0.003) Structural damping ratio σ 0.01

Plate thickness tpr (m) 0.003 (0.002)
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in the case of a white noise excitation.

3.2. Performance
The performance of the active control system is analysed in two ways. Firstly, a point force
acting on mass m1 is assumed with a white noise spectral distribution, that corresponds to a
force located at the centre of the source panel in Fig. 1. In this case, the mean squared velocity
of the radiating body is found by solving the integral over frequencies of the squared magnitude
of the system transfer mobility, since a unit power spectral density for the excitation is assumed.
Secondly, a TBL excitation on the source panel is assumed. In this case, the frequency- and
space-averaged velocity PSD (VPSD) of the radiating plate is used. In either excitation scenario,
the performance of the active control is found to be a function of the active and passive damping
ratio ξ and η.

3.2.1. Point force excitation In Fig. 5 - 6, the mean squared velocity of the radiating panel
is plotted as function of the passive and active damping ratio. The case with β > 1 is shown
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β < 1

Figure 7. Amplitude of the transfer mobility of the radiating body. No control (- - - -), passive

control (· · · · · ·), optimal tuned active control (——) and for β < 1, η = ηopt/10 (— · —). Left hand

side is for β > 1 and right hand side is for β < 1.

in Fig. 5, whereas the case with β < 1 is in Fig. 6. For β > 1, a minimum exists for a certain
combinations of ξ and η and it is indicated in Fig. 5 by a white star “∗”. It corresponds to an
optimal combination of the damping coefficients, gopt and cpopt . For β < 1, there is no minimum
since the kinetic energy decreases monotonically with ξ and it will continue to decrease with
increasing the gain g, so theoretically an infinite reduction of sound power is possible. Therefore,
when β < 1, large absolute values of positive ξ give considerable vibration isolation effects. On
the contrary, when β > 1, the maximum gain is limited between ξ1 and ξ2. In both figures,
the white dash-dotted line gives an optimal passive damping ratio, ηopt, for any stable ξ. In
Fig. 7, the amplitude of the transfer mobility of the radiating panel for the two cases is shown.
Two control approaches are considered. The first approach is a fully passive approach where
the feedback gain equals zero and the damping is achieved exclusively through cp. The damping
coefficient cp can be tuned to an optimal value which is indicated by a hollow circle in Fig. 5 -
6. The second approach is with a combination of passive and active damping achieved through
both the feedback gain and the damper cp. In this case, the optimally tuned damping ratio,
(ξopt, ηopt), defined with the white star “∗”is used when β > 1; whereas, for β < 1, ξ is set
to 10. The passive damping ratio is set to a value that lies on the white dash-dotted line in
Fig. 6. Comparing the frequency spectra in Fig. 7, it can be seen that the active control (solid
line) gives a significant improvement over the passive one. Additionally, it is clear that the
situation in which β < 1 results in a much more convincing active reductions of the radiating
panel vibrations in comparison to the situation in which β > 1.

3.2.2. Turbulent boundary layer excitation In Fig. 8 and 9, the vibration isolation performance
of the control system for a stationary TBL excitation, described in Eq. (1), are plotted. Only
the case with β < 1 is considered. Once again, it is possible to define an optimal combination of
the active and the passive damping ratios which minimizes the kinetic energy of the radiating
panel, as shown by the white dash-dotted line in Fig. 8. As with the point force excitation, the
radiating panel kinetic energy decreases monotonically with ξ. However, the stochastic TBL
pressure distribution results in a steeper high frequency roll-off of the radiating body velocity
PSD (VPSD), shown in Fig. 9. An improvement due to the optimal active control, in comparison
with the passive one, is still found (solid line); even when the passive damping ratio is one tenth
of the optimal one (dash-dot line). Therefore, also with a TBL excitation, the proposed control
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approach gives the expected, if not better, results. These results can be generalized also for the
sound pressure in the cavity c2, since for the reduced order model the pressure distributions are
uniform due to the zero frequency acoustic breathing mode.

4. Results with an increased order model
In this section, a total number of Mps = 24 and Mpr = 20 panel modes, and Nc1 = 24 and
Nc2 = 48 acoustic modes, is used to model the response of the system up to 1000 Hz. The
stability of the control system is again discussed. However, the large number of modes precludes
the use of the Routh-Hurwitz criterion such that the Nyquist criterion is used as an alternative.
Also, the performance of the active control system is studied in the case with a stationary TBL
excitation.

4.1. Stability
The open loop sensor-actuator frequency response function is used to analyse the stability of the
feedback loop using the Nyquist criterion. That is, the error velocity measured by the sensor
at the radiating panel, pr, witch is due to the control force, fc, is considered when the primary
excitation is switched off. Note that the error velocity is due to both components of the control
force, one acting on radiating panel pr and the other one reacting off source panel ps. In Fig.
10 - 11, two Nyquist plots are shown. One for the case with β > 1 and the other for the case
β < 1. For β > 1, the locus crosses the negative real axis at the first resonance. Thus, the
system is conditionally stable and the maximum gain is limited. For β < 1, the Nyquist plot is
primarily located at the right hand side of the imaginary axis but, looking more closely, at higher
frequencies the negative real axis is crossed and a large but again finite feedback gain could be
used before the system becomes unstable. However, an ideal sensor-actuator is assumed here
and, therefore, further limitations to the maximum feedback gain can be expected in practice,
due to the real dynamics of the sensor and the actuator.

4.2. Performance
In this preliminary analysis, the performance of the control system is analysed in terms of: a) the
VPSD at the centre of the radiating plate pr; b) the pressure PSD at the centre of the cavity c2.
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Figure 10. Nyquist Plot of the open loop

sensor-actuator FRF for β > 1.
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Figure 11. Nyquist Plot of the open loop

sensor-actuator FRF for β < 1.
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at the centre of c2, for a TBL excitation, plotted

versus ξ and η, for β > 1.
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Figure 13. Frequency-averaged pressure PSD

at the centre of c2, for a TBL excitation, plotted

versus ξ and η, for β < 1.

The corresponding results are shown in Fig. 14 and 16. Also, some frequency-averaged control
performance metrics are used. To this end, the pressure (or the velocity) PSD at the centre of
the cavity (or the panel) is integrated numerically over all frequencies. It can be seen in Fig. 12
- 13 that the broadband noise reduction performance is qualitatively similar to that observed
with the reduced order model. In Fig. 12, as ξ moves closer to the stability limits the pressure
increases; whereas, for β < 1, Fig. 13, the sound pressure in c2 monotonically decreases with
increasing the gain g (or ξ). The pressure PSD at the centre of c2 is plotted versus frequency in
Fig. 14 for three cases: without control, with passive control using cp only, and finally with active
control using both cp and g. For the passive control, the optimally tuned damping coefficients
given by the circles in Fig. 12 - 13 are used. For the active control case for β > 1 (red curves),
the combination of active and passive damping ratios used is indicated by the white ∗. For the
active control case for β < 1, the combination is designated by the white ×. Once again, the
case β < 1 gives better isolation effects. In Fig. 15 - 16, the frequency-averaged VPSD versus ξ
and η and the corresponding VPSD at the centre of pr are shown in the case β < 1. Here, the
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Figure 14. Pressure PSD at the centre of c2. No control (- - - -), passive control (· · · · · ·) and optimal

tuned active control (——). Left hand side is for β > 1 and right hand side is for β < 1.
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Figure 16. VPSD at the centre of pr, for β < 1.

No control (- - - -), passive control (· · · · · ·) and

optimal tuned active control (——).

damping coefficients used are given by the white × and the white ◦, shown in Fig. 15, for the
active control and for the passive one, respectively.
In general, there is a slight increase in the high frequency amplitude response when the control
is set on, as shown in Fig.14 and 16. This increase is particularly marked in the case β > 1.
Nevertheless, large reductions of the interior sound levels can be expected at the lowest resonance
frequencies. By comparing Fig. 16 to the right-hand side plot of Fig. 14, it can be concluded that
the large contributions to the interior sound pressure are the two lowest double panel modes.
This is why controlling vibrations of the radiating panel gives significant reductions of the sound
pressure in the cavity c2. The two modes are clearly the strongest contributors to the interior
pressure. Thus significant frequency-averaged reductions are seen in plots Fig. 14 and 16 despite
the small control spillover at higher frequencies.

5. Conclusions
The active control of TBL noise transmission through a coupled double panel system into an
acoustic enclosure is investigated. The theoretical analysis of the control system stability is
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carried out. Closed form expressions for the stability limits are given for a reduced order model
in terms of the minimal/maximal active damping ratio. For the increased order model, similar
limits are found which only slightly change with the passive damping ratio. Afterwards, the
performance of the active control system is analysed theoretically. The results are presented
first for a point force excitation with white noise spectral distribution as a reference case and
then for the stochastic TBL pressure distribution - both for the reduced and the increased order
model. The behaviour of the control system is found to strongly depend on the ratio between the
fundamental resonance frequencies of the two panels. The case when the fundamental resonance
frequency of the source panel is larger than the fundamental resonance frequency of the radiating
panel results in very promising sound transmission control effects. In particular, for a stationary
TBL excitation, significant reductions of the low frequency vibrations of the radiating panel
are predicted. Consequently, large sound pressure reductions in a broad frequency band in the
acoustic cavity used to model the vehicle interior are predicted.
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[6] Gardonio P and Alujević N 2010 Double panel with skyhook active damping control units for control of sound

radiation J. Acoust. Soc. Am. 128 1108–17
[7] Gardonio P and Zilletti M 2015 Sweeping tuneable vibration absorbers for low-mid frequencies vibration

control JSV 354 1–12
[8] Preumont A and et al 2002 Force feedback versus acceleration feedback in active vibration isolation JSV 257

605–13
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