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Abstract. During the past decades, the complexity of conventional methods to perform seismic 

performance assessment of buildings led to the development of more effective approaches. The 

rigid body spring-discrete element method (RBS-DEM) is one of these approaches and has 

recently been applied to the study of the behavior of reinforced concrete (RC) buildings 

subjected to strong earthquakes. In this paper, the governing equations of RBS-DEM planar 

elements subjected to lateral loads and horizontal ground motion are presented and used to 

replicate the hysteretic behavior of experimental RC columns. The RBS-DEM models of 

columns are made up of rigid components connected by systems of springs that simulate axial, 

shear, and bending behavior of an RC section. The parameters of springs were obtained using 

Response-2000 software and the hysteretic response of the models of select columns from the 

Pacific Earthquake Engineering Research (PEER) Structural Performance Database were 

computed numerically. Numerical examples show that one-component models were able to 

simulate the initial stiffness reasonably, while the displacement capacity of actual columns 
undergoing large displacements were underestimated.  

1.  Introduction 

The destruction brought about by earthquakes leads not only to economic loss, but also severe injuries 

and loss of lives due to collapse of buildings and civil infrastructure. In the Philippines, reinforced 

concrete (RC) structures are the most at risk due to the prevalent use of reinforced concrete as a 

building material. In order to prevent the collapse of these structures, their performance to strong 

ground shaking must be studied so as to improve the proposed design or to provide a retrofit scheme 

for existing structures. 

During the past decades, the complexity of conventional methods such as the finite element method 

(FEM) to perform seismic performance assessment of buildings led to the development of more 

effective approaches. Most of these approaches are based on the discrete element method (DEM) 

originally proposed by Cundall [1] and the rigid body spring method (RBSM) proposed by Kawai [2]. 

DEM and RBSM models of structures make use of assembly of rigid elements connected by springs 

and are reported to be suitable for simulating the dynamic response of a structure up to collapse [3-6]. 

Compared with FEM, these methods are considered simpler and they allow separation of the 

components that make up the structure and, therefore, are capable of simulating the progressive 

collapse mechanisms [6-7]. 

     The rigid body spring-discrete element method (RBS-DEM) is one of these approaches that have 

recently been applied to the study of the behavior of RC buildings subjected to strong earthquakes [8-

12]. This method is based on the plastic hinge concept and the observed typical failure mechanism of 
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beams and columns, showing large rotations at the ends and relatively small rotations in the middle of 

the elements. In the RBS-DEM, a structure is disintegrated into a number of rigid body elements 

connected by spring systems between them. The deformation of the structure is described by the 

centroidal displacements and rotations of the spring-connected rigid bodies, converting the problem of 

structural analysis into a problem of rigid body mechanics. For structures subjected to strong ground 

motions or loaded up to failure, material nonlinear behaviour of the elements is simulated using the 

nonlinear springs at the pre-identified possible location of plastic hinges in the element. 

     Time-stepping methods have been used to obtain the response of RBS-DEM models and results 

have been validated using available experiments [8-10, 12]. Although it was shown that the RBS-

DEM yielded reasonable results, the development of alternative methods of validation and/or 

verification of results is also important.  

     This paper presents the governing equations of RBS-DEM models that may be used to obtain the 

dynamic properties and response to pseudo-static loads, and to analyze the hysteretic behavior of 

experimental RC columns. The response of RBS-DEM models of planar columns calculated using the 

analytical formulation will be compared to experimental data available in the Pacific Earthquake 

Engineering Research (PEER) Structural Performance Database [13]. 

 

2.  Model formulation 

2.1.  Multi-component model 

In the rigid body spring-discrete element method (RBS-DEM), a vertical column is modeled using a 

number, N, of rigid body components connected by spring systems that simulate the axial, shear, and 

flexural capacity as shown in figure 1. In plane problems, if vertical deformations are neglected and 

small rotations are assumed, the total degrees of freedom of the multi-component model shown will be 

two times the number of rigid components, i.e., the displacements of each n-th component may be 

derived from its relative horizontal displacement, un, and absolute rotation, 𝜃n, and the generalized 

displacements of components below it (see figure 1). 

     When the column is subjected to horizontal and vertical concentrated forces acting at the top, Px 

and Py, the application of d’Alembert’s principle to the dynamic equilibrium yields the expressions for 

the internal shear force, Vn, and bending moment, Mn, at the base of the component as: 

 

 𝑉𝑛 +∑[𝑚𝑖∑(𝑙𝑖𝑗𝜃̈𝑗 + 𝑢̈𝑗)

𝑖

𝑗=1

]

𝑁

𝑖=𝑛

= 𝑃𝑥(𝑡) − 𝑃𝑦(𝑡)𝜃𝑛−1 (1) 

 

 

 

 

𝑀𝑛 +∑{𝐼𝑖𝜃̈𝑖 +∑𝑙𝑗𝑖 [𝑚𝑗∑(𝑙𝑗𝑘𝜃̈𝑘 + 𝑢̈𝑘)

𝑗

𝑘=1

]

𝑁

𝑗=𝑖

}

𝑁

𝑖=𝑛

=∑{𝑃𝑥(𝑡)𝑙𝑖 − 𝑃𝑦(𝑡)𝑙𝑖𝜃𝑖} 

𝑁

𝑖=𝑛

  (2) 

where  𝑙𝑗𝑖 = {

𝑙𝑖

2
 𝑖𝑓 𝑖 = 𝑗

𝑙𝑖  𝑖𝑓 𝑖 ≠ 𝑗
 , and 𝑙𝑖  , 𝑚𝑖,  𝐼𝑖 = 𝑚𝑖𝑙𝑖

3 12⁄  respectively are the length, mass, and moment of 

inertia of the ith component. 

 

     The internal forces Vn and Mn are also the corresponding nonlinear restoring forces of the springs 

fVn and fMn. The 2N coupled differential equations (1)-(2) may be written in matrix form as:  

 

[
𝑨 𝑩
𝑪 𝑫

] {
𝒖̈
𝜽̈
} +  {

𝒇𝑽(𝒖)

𝒇𝑴(𝜽)
} = {

𝑷
𝑴
}                                              (3) 

 

where the corresponding elements of the sub-matrices are 
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Figure 1. Multi-component RBS-DEM model of a column: discretization, degrees of freedom and 

dynamic equilibrium of the nth element 
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for i = 1, 2, …, N and j = 1, 2, …, N.  
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     When the column is modeled using only one rigid component and vertical deformations are 

neglected, the equation governing the response under the assumptions of large and small rotations may 

be written as in equation (4) and equation (5), respectively 

 

[
𝑚

𝑚𝑙

2
𝑐𝑜𝑠𝜃

𝑚𝑙

2
𝑐𝑜𝑠𝜃 𝐼 + 

𝑚𝑙2

4

] {
𝑢̈

𝜃̈
} + {

𝑓𝑉(𝑢) −
1

2
𝑚𝑙𝜃̇2𝑠𝑖𝑛𝜃

𝑓𝑀(𝜃) −
1

4
𝑚𝑙𝜃̇2𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃

} = {
𝑃𝑥(𝑡) − 𝑚𝑥̈𝑔

𝑃𝑥(𝑡)𝑙 𝑐𝑜𝑠𝜃 −
1

2
𝑚𝑥̈𝑔𝑙𝑐𝑜𝑠𝜃

}      (4) 

 

[
𝑚

𝑚𝑙

2

𝑚𝑙

2
𝐼 + 

𝑚𝑙2

4

] {
𝑢̈

𝜃̈
} + [

𝑘𝑉 0
0 𝑘𝑀

] {
𝑢
𝜃
} = {

𝑃𝑥(𝑡) − 𝑚𝑥̈𝑔

𝑃𝑥(𝑡)𝑙 −
1

2
𝑚𝑥̈𝑔𝑙

}    (5) 

 

where kV and kM are the elastic stiffness constants of the shear and flexural springs, respectively. 

2.2.  Solution method 

With the above governing equations, in the assumption of small rotations and linear springs, the 

closed-form exact solution for the response of the model when subjected to, for example, harmonic 

loads may be obtained and dynamic properties such as frequencies and mode shapes may also be 

easily derived. For example, the natural frequency of vibration of the single-component model (in 

equation 5) may be expressed as 

 

𝜔2 =
𝑘𝑀

2𝑙
[1 +  𝜅 ± √1 +  𝜅 + 𝜅2 ]                                            (6) 

 

where  𝜅 = 𝑙2𝑘𝑉 3𝑘𝑀⁄   is the stiffness ratio. In the general analysis of RC columns subjected to 

pseudo-dynamic loads, however, a numerical integration scheme is required. We propose to use a 

time-stepping classical method such as the fourth-order Runge-Kutta method (RK4) to solve equations 

(3)-(5). 

 

3.  Model parameters for reinforced concrete columns and experimental validation 

3.1.  Nonlinear spring parameters 

In order to simulate the hysteretic behavior of RC columns, nonlinear shear and flexural (or rotational) 

springs have to be used. In this paper, the spring parameters are estimated using the moment-curvature 

and shear force-strain diagrams of the RC section obtained using the software Response-2000 [14]. 

The cross-section parameters were inputted, then various combination of linear curves were fitted onto 

the resulting shear-shear strain and moment-curvature diagrams. 

     As shown in figure 2 for a sample column section, the bilinear curve was fitted to the shear-strain 

diagram and a trilinear curve to the moment-curvature diagram. The bilinear curve will be the 

backbone curve of the bilinear shear restoring force-displacement hysteresis model of shear springs 

and the trilinear curve for the Takeda [15] hysteresis model used for the flexural spring. 

    The spring parameters to be estimated and used for the RBS-DEM model of RC columns are shown 

in table 1. The control points that signify cracking, yielding, and failure of a given column section are 

estimated as shown in figure 2 and the other parameters are estimated for the hysteresis models used. 

For the flexural spring, the unloading stiffness degradation factors B0 and B1 dictates the fatness of the 

hysteresis loop of the Takeda model. A value of 0.4 is assumed for parameter B0 since it cannot be 

determined by using the geometric and material properties of the RC column [16]. The degradation 

parameter B1 that describes the loss of rigidity of a structure during cyclic loading is estimated by 

taking the ratio of Kr (given in equation (7)) with the initial stiffness of the structure [16]. 

𝐾𝑟 =
𝐹𝑐+𝐹𝑦

𝐷𝑐+𝐷𝑦
|
𝐷𝑚

𝐷𝑦
|
−0.4

                                                      (7) 
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Figure 2. Derivation of the nonlinear spring parameters of RBS-DEM model from the shear-strain 

and moment-curvature diagrams of the RC section 

 

Table 1. Nonlinear spring parameters required for RBS-DEM model of RC columns 

 

Parameters 

Shear spring 

Ky (N/m) Initial stiffness 

Dy (m) Yield point shear displacement 

Ku (N/m) Post-yielding stiffness 

Flexural spring 

Kc (Nm/θ) Initial stiffness 

Dc (𝜃) Cracking angle 

Ky (Nm/θ) Cracked stiffness  
Dy (𝜃) Yield point rotation angle 

Ku (Nm/θ) Post-yielding stiffness 

B0 Degradation parameter 

B1 Degradation parameter 

 

3.2.  Pseudo-dynamic loading of RC columns 

In order to validate the proposed RBS-DEM model, models of actual RC columns subjected to 

pseudo-dynamic loads will be used and the load-displacement curves will be compared with 

experimental results available in the PEER Structural Performance Database [13]. In the experiment, 

RC columns that support constant axial loads are subjected to cyclic lateral loads. Four columns were 

selected and their section and material properties are listed in table 2.  
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Table 2. Properties of select RC columns from PEER database 

 

 Specimen 

Properties 
Soesianawati 

No 1 

Tanaka & Park 

No 1 

Tanaka & Park 

No 5 

Zahn 

No 7 

Span-depth ratio 4 4 3 4 

Length (mm) 1600 1600 1650 1600 

Axial load (kN) 744 819 968 1010 

Concrete strength (MPa) 46.5 25.6 32 28.3 

Width (mm) 400 400 550 400 

Depth (mm) 400 400 550 400 

 Concrete cover (mm) 13 40 40 13 

L
o

n
g
it

u
d
in

al
 

R
ei

n
fo

rc
em

en
t # 12 8 12 12 

Diameter (mm) 16 20 20 16 

Yield stress (MPa) 446 474 511 440 

Ultimate stress (MPa) 702 721 675 674 

Area (mm2) 201.06 314.16 314.16 201.06 

T
ra

n
sv

er
se

 R
ei

n
fo

rc
em

en
t 

  

Yield stress (MPa) 364 333 325 466 

Ultimate stress (MPa) 521 481 429 688 

Diameter (mm) 7 12 12 10 

s (mm) 85 80 110 117 

Area (mm2) 38.48 113.10 113.10 78.54 

Stirrups Type Rec. Rec. w/ jhook Rec. w/ jhook Rec. 

Shear Legs 4 3 4 4 

 

 

Table 3. Computed RBS-DEM spring parameters of selected RC columns using Response-2000 

 

 Specimen 

Soesianawati 

No 1 

Tanaka & Park 

No 1 

Tanaka & Park 

No 5 

Zahn  

No 7 

S
p

ri
n

g
 P

ar
am

et
er

s 
 

S
h
ea

r 

Ky (N/m) 7.0387E+08 6.3089E+08 9.6302E+08 6.2110E+08 

Dy (m) 1.2960E-04 1.3280E-04 1.7325E-04 1.6800E-04 

Ku (N/m) 8.3185E+06 2.5114E+07 4.0628E+07 6.3231E+06 

F
le

x
u
re

 

Kc (
𝑁𝑚

𝜃
) 2.5428E+08 1.7426E+08 6.2258E+08 2.1371E+08 

Dc (𝜃) 3.1891E-04 4.5449E-04 2.4423E-04 4.4191E-04 

Ky (
𝑁𝑚

𝜃
) 6.2937E+07 4.7797E+07 1.3001E+08 6.2188E+07 

Dy (𝜃) 2.7183E-03 3.7852E-03 2.5311E-03 2.6367E-03 

Ku (
𝑁𝑚

𝜃
) 7.5772E+06 4.5919E+06 3.7331E+07 1.4052E+07 

B0 0.40 0.40 0.40 0.40 

B1 0.22 0.42 0.68 0.15 
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     The experimental results for the four selected columns are shown as broken gray lines in figure 3, 

where the horizontal applied load is plotted against the displacement of the column top. The one-

component RBS-DEM models of the same columns with the spring parameters tabulated in table 3 

were subjected to the same loading history and the response were computed by solving equation (4) 

using RK4. The corresponding nonlinear parameters of the springs are computed from the section 

properties listed in table 2 and by using Response-2000. The load-deformation curves are shown in 

figure 3 as solid black lines. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Force-displacement plots of select experimental RC columns (shown as broken gray lines) 

and RBS-DEM models (shown as solid black lines).  

 

 

     A general trend may be observed from the load-deformation plots of the RBS-DEM models of the 

selected RC columns. The column models were able to simulate to some extent the initial behaviour of 

the columns but fail to cover the entire force-displacement plot. The result is expected since the 

models lumped the elasticity using a spring system located only at the base of the columns. 

 

4.  Concluding remarks 

The governing equations of multi-component rigid body spring-discrete element models of reinforced 

concrete columns subjected to lateral loads were presented. The 2N coupled ODEs in terms of shear 

and flexural deformations of the springs of the model can be useful to study the hysteretic behavior of 

actual columns and to validate nonlinear time-history analyses of RC frames. 
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     Response of a single component RBS-DEM model of a RC column was compared with 

experimental results from the PEER database. Nonlinearity of the analytical model were evaluated 

using Response-2000 software. The bilinear and Takeda models were used to account for the 

hysteretic behaviour of RC under shear and flexural restoring forces, respectively. Examples show that 

the model is able to simulate the elastic stiffness, but underestimates the column displacement capacity 

due to lumped stiffness at the base of the column. The response of the column model may be improved 

by investigating the use of multi-component RBS-DEM models taking into account vertical 

displacement, and the use of more appropriate hysteresis rules for the effective shear and flexural 

springs to be used. Future work will also investigate the use of energy methods to derive governing 

equations in terms of relative inter-component rotations to obtain symmetric mass and stiffness 

matrices. 
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