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Abstract. We give a short and basic introduction to our covariant Dyson-Schwinger-Bethe-
Salpeter-equation approach using a rainbow-ladder truncated model of QCD, in which we
investigate the leptonic decay properties of heavy quarkonium states in the pseudoscalar
and vector channels. Comparing the magnitudes of decay constants, we identify radial 1−−

excitations in our calculation with experimental excitations of J/Ψ and Υ. Particular attention
is paid to those states regarded as D-wave states in the quark model. We predict e+e−-decay
width of the Υ(13D1) and Υ(23D1) states of the order of ≈ 15 eV or more. We also provide a
set of predictions for decay constants of pseudoscalar radial excitations in heavy quarkonia.

1. Introduction
The Dyson-Schwinger-Bethe-Salpeter-equation (DSBSE) approach to hadrons is a modern
nonperturbative framework based on QCD as a continuum quantum field theory [1].
Phenomenological DSBSE studies mostly make use of the rainbow-ladder (RL) setup, since
this provides excellent value for money or, in other words, an optimal balance of richness and
feasibility, e. g., [2–16]. Beyond RL one can explore the infinite set of Dyson-Schwinger equations
(DSEs) in symmetry-preserving truncation schemes, see [17–19] and references therein.

2. DSBSE Setup
The Dyson-Schwinger equation (DSE) for the dressed quark propagator S describes how S(p)
behaves at quark momentum p depending on the dressed gluon propagator D(q) and the dressed
quark-gluon vertex (QGV) Γ(p, q) (the bare QGV is denoted by γ), which is depicted in the
left panel of Fig. 1. The right panel of this figure shows the definition of the quark self energy
Σ(p) [20, 21]. S0 denotes the free quark propagator, which serves as a driving term in this
inhomogeneous integral equation and is also used to formulate a renormalization condition for
the regularized integral [22]. In all figures, blobs depict dressed quantities, while dots depict the
bare counterparts. In particular, the scalar part of S0 is the current-quark mass mq. Here and
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Figure 1. Left panel: quark DSE; Right panel: quark self energy Σ.
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Figure 2. Left panel: RL Ansatz ; Right panel: rainbow approximation of Σ in the quark DSE.

in the following, we assume all quantities to be renormalized and omit indices for simplicity.
Note that, due to the appearance of the inverses of S and S0, the quark DSE is nonlinear.

In RL truncation one makes the Ansatz depicted in the left panel of Fig. 2 to replace
the product of the dressed gluon propagator and dressed QGV by the product of their
bare counterparts multiplied with an effective interaction G [23]. This function of the gluon
momentum squared is then modeled and used to conduct sophisticated covariant studies of
hadrons. The right panel of Fig. 2 shows the effect of this Ansatz in the quark self energy as
defined in the right panel of Fig. 1. Basically, one is left with known quantities and can solve
the equation after making an informed choice for G.

The two-body bound-state equation in a quantum field theory is the Bethe-Salpeter equation
(BSE), which is depicted in the left panel of Fig. 3. Ingredients are the dressed quark propagator,
which one gets from solving its DSE, and the amputated quark-antiquark scattering kernel K,
which is unknown a priori [24]. The RL truncation, inspired and guided by the axial-vector
Ward-Takahashi-identity (AVWTI), leads to an effective-gluon exchange ladder kernel as shown
in the center panel of Fig. 3. The AVWTI is the manifestation of chiral symmetry in the QCD
context, and respecting it guarantees a correct in-principle as well as phenomenological setup
of the framework with respect to chiral symmetry and its dynamical breaking. Concretely, RL
truncation satisfies the AVWTI and thus one automatically has a massless pion in the chiral
limit, if chiral symmetry is dynamically broken by the effective interaction [25, 26].

The solution of the BSE is the Bethe-Salpeter amplitude (BSA) denoted in the left panel
of Fig. 3 for the pion by Γπ. It is the covariant analogue of a wave function and contains all
information about the state [27–29]. It is found at a particular value of one of the arguments of
Γπ, the total momentum squared P 2, which gives the bound-state’s mass M via M2 = −P 2.

The ladder-truncated BSE kernel again contains only known objects such that a solution is
straightforward. The quark DSE and meson BSE are coupled, since the DSE solution appears
as input in the BSE. We solve this coupled set of equations numerically in Euclidean momentum
space. The appropriate tools are all at hand and can be found in [30–35]. In order to calculate
leptonic decay constants of mesons, one has to compute a diagram as shown in the right panel
of Fig. 3, where the appropriate axial-vector current for fπ is depicted as a black-yellow blob
and denoted by γ5γµ for the pseudoscalar case; the vector decay constant is obtained via γµ.
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Figure 3. Left panel: meson BSE; Center panel: ladder-truncated BSE kernel; Right panel:
diagram to compute the pseudoscalar leptonic decay constant.
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Figure 4. Sketches of: Left panel: effective coupling G; Right panel: typical set of solutions of
the gap equation: mass functions from the chiral limit to b quark.

Table 1. Calculated pseudoscalar and vector meson decay constants in MeV compared to
experimental data [40, 41], where available. Left : charmonium; right : bottomonium.

State JPC Calc. I II Exp.

Pseudoscalar
ηc 0−+ 401 378 339(14)
ηc(2S) 0−+ 244(12) 82 189(50)
ηc(3S) 0−+ 145(145) 206 −
ηc(4S) 0−+ − 87 −

Vector
J/Ψ 1−− 450 411 416(5)
Ψ(2S) 1−− 30(3) 155 294(4)
Ψ(3770) 1−− 118(91) 45 99(3)
Ψ(4040) 1−− − 188 187(8)
Ψ(4160) 1−− − 1 142(34)
Ψ(4415) 1−− − 262 161(10)

State JPC Calc. I II Exp.

Pseudoscalar
ηb 0−+ 773 756 −
ηb(2S) 0−+ 419(8) 285 −
ηb(3S) 0−+ 534(57) 333 −
ηb(4S) 0−+ − 40(15) −

Vector
Υ 1−− 768 707 715(5)
Υ(2S) 1−− 467(17) 393 497(4)
Υ(13D1) 1−− 41(7) 371(2) −
Υ(3S) 1−− − 9(5) 430(4)
Υ(23D1) 1−− − 165(50) −
Υ(4S) 1−− − 20(15) 341(18)

3. Results and Discussion
A very successsful and typical sophisticated effective interaction was given in [36], which we use
also herein. The high-momentum behavior of the interaction is that of perturbative QCD; its
shape at intermediate momenta is determined by essentially two parameters: an inverse effective
range ω and an overall strength D [37]. Variations of these parameters change the interaction’s
shape as shown in the left panel of Fig. 4 [38]. The right panel of Fig. 4 shows a characteristic
set of solutions of the quark DSE in terms of the quark mass function, where mq assumes
typical values for the masses of the up/down (light), strange, charm, and bottom quarks [39].
In addition to those, we also show the solution in the chiral limit, i. e., with mq = 0 [35].

The most notable feature of this set of mass functions is the transition from the perturbative
domain at the right of the plot, where one essentially deals with current quarks, to the left
of the plot, where dynamical chiral symmetry breaking (DχSB) is clearly visible in that the
quarks show masses typical for corresponding constituent quarks. The border between these
two domains is ≈ 1 GeV2, a scale set by the model parameters responsible for DχSB.
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After detailed studies of quarkonium spectroscopy in [39, 42] we focus on leptonic decay
constants herein. Those were calculated for pseudoscalar and vector mesons already elsewhere,
e. g., [42–44], but never systematically or comprehensively for radially excited states. Our results
are given in Tab. 1 for two different sets of model parameters and compared to experimental
data where available. Set I provides the values obtained for the results as given in [39], i. e.,
ω = 0.7 GeV and D = 0.5 GeV2 for charmonium, and ω = 0.7 GeV and D = 1.3 GeV2

for bottomonium, which were fitted separately for c̄c and b̄b to ground- and low-lying excited
quarkonium states [39]. In order to have a common parameter set for both as well as to avoid
technical complications [45] which result in a limited number of states in set I, we present also
set II, which is uniformly obtained via ω = 0.3 GeV and D = 1.3 GeV2.

We found that our results for decay constants do not change much from one parameter set to
another, so they are robust in terms of their order of magnitude. However, some changes occur.
For example, excitations can switch places as seen for the first and second J/Ψ excitation in
sets I and II. Also, the smaller the numbers get, the more sensitive they tend to be to parameter
changes. Still, on the whole one can identify the relevant patterns and we turn to set II for
further analysis. By the size of the decay constants we match our third radial Υ excitation to
the missing Υ(13D1) and the fifth to the Υ(23D1), thus reasonably reordering our results.

Then, our prediction for the Υ(13D1) state, at a mass of 10.2±0.1 GeV [39], is a decay width
Γ(Υ(13D1) → e+e−) ≈ 15 eV. For the Υ(23D1) state we obtain Γ(Υ(23D1) → e+e−) ≈ 75
eV. These predictions for the decay widths are about one order of magnitude larger than those
from other approaches, see [46, 47] and references therein. A more in-depth comparison is thus
necessary and will be published elsewhere. We also note that in terms of experimental sensitivity,
the upper limits for these decays are, in fact, of the order of 40 eV or less [48].

To check the S/D-wave assignment, we investigated the contributions from various covariant
structures in the vector-meson BSA to the state’s canonical norm. While l is not a Lorentz
invariant, we can investigate the situation in the meson rest frame in which we solve the BSE
[49]. Upon inspection, the picture holds, i. e., those states with larger leptonic decay constants
receive dominant contributions to the norm from S-wave BSA components. In those cases
which we compare to D-wave states, the dominant contributions are shifted to D-wave BSA
components with small additional contributions from S-wave. We defer a more detailed analysis
and discussion of this matter to the future as well.
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