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Abstract. We derive an analytical expression for the crossover temperature 
corresponding to the transition from classical activation mechanism to 
temperature assisted quantum tunnelling in spin systems. The crossover 
temperature depends on the magnetic configuration and Hessian at the first 
order saddle point on the energy surface of the system. The theory is applied to 
several single spin models, including a system with four-fold anisotropy. Good 
agreement is obtained with experimental results for a molecular magnet 
containing Mn4. 

1.  Introduction 
Investigations of the quantum tunnelling in spin systems have been the topic of theoretical and 
experimental studies over the past few decades. From the theoretical point of view, these problems are 
of great interest for fundamental basis of quantum theory. They are also practical, because small 
magnetic particles are good candidates for memory devices and the knowledge of their quantum 
behaviour helps us evaluate the lower limit of the size of a potential memory unit [1]. 

In case of spin systems, transitions between stable states separated by a potential barrier can occur via 
classical thermal activation over the barrier or by quantum tunnelling through the barrier. At 
sufficiently high temperature the transitions are governed by thermal activation and the rate, Γ,	obeys 
the Arrhenius law, Γ = 	 Γ%𝑒'(/*+,	, with U being the height of the energy barrier between the states. 
As the temperature is lowered, quantum tunnelling becomes the dominant mechanism and the rate 
eventually becomes temperature independent if the final state is equal or lower in energy than the 
initial state. The crossover temperature, 𝑇.,	indicates at what temperature the transition mechanism 
changes from thermal activation to thermally activated quantum tunnelling [2]. 

We propose a general approach for calculating the crossover temperature and give an analytical 
formula for 𝑇. derived for a wide range of spin systems with arbitrary anisotropy in an external 
magnetic field. The formula reduces to known analytical solutions for simple spin systems [3,4], but 
also works for complex systems, for which only numerical results have been available so far. 

Saint Petersburg OPEN 2016 IOP Publishing
Journal of Physics: Conference Series 741 (2016) 012183 doi:10.1088/1742-6596/741/1/012183

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



2.  Derivation of the formula 
The thermally averaged escape rate is given by   

	 𝛤 𝑇 = 	 0
12

𝛤33 𝑒
456
7+8,	 (1)	

where 𝑍% is the partition function of the initial state, Γ3 are quantum transition probabilities from 
energy levels En, and T is the temperature of the bath. The transition probabilities can be estimated 
from the Euclidean (imaginary-time) action as functional integral from the exp	(−𝑆B). Within the 
semi-classical approximation, the dominant contribution to the escape rate is given by the saddle point 
of the action and the escape rate can be estimated with an exponential accuracy as 

	 𝛤 𝑇 ∝ 𝑒𝑥𝑝[−𝑆 𝒒H3IJ ],	 (2)	

where 𝒒H3IJ is the classical path that corresponds to a saddle point to the action S surface. Hereafter 
we use atomic units (ℏ = 1, 𝑒 = 1, 𝑚O = 1). 

We consider a system with a quantum spin number, s, energy specified as a function of the angles 𝜃 
and 𝜑 giving the direction of the magnetic vector. The Euclidean action is  

	 𝑆 𝜃, 𝜑 = 	 𝑑𝜏 −𝑖𝑠(1 − 	cos 𝜃)𝜑 + 𝐸(𝜃, 𝜑)
[
\

'[
\

.	 (3)	

where β=1/kBT. 

Our method is based on a quadratic expansion of the action around the saddle point of the potential 
energy surface. In order to find the saddle point, we write the first variation of the action (3): 

	 𝛿𝑆 = 	 𝑑𝜏 −𝑖𝑠 sin 𝜃 𝜑 + bB c,d
bc

𝛿𝜃 +	 𝑖𝑠 sin 𝜃 𝜃 + bB c,d
bd

𝛿𝜑
[
\

'[
\

,	 (4)	

and by setting it to zero, we obtain the equations of motion: 

	 𝜑 = 'H
I fgh c

bB c,d
bc

,	 (5)	

	 𝜃 = H
I fgh c

bB c,d
bd

.	 (6)	

These equations have two types of the solutions: The first is the trivial one, 𝜃	 = 𝜃% and 𝜑 = 𝜑%, 
corresponding to a point on the energy surface 𝐸(𝜃, 𝜑). The second one is the instanton – a closed 
trajectory, for which the energy is conserved. When the temperature is close to the crossover 
temperature, the amplitude of the instanton is small and the trajectory involves only small oscillations 
in the vicinity of the saddle point, 𝜃 = 	𝜃k and 𝜑 = 	𝜑k, on the potential surface 

	 𝜃 = 	 𝜃k + 	𝛿𝜃,				𝜑 = 	𝜑k + 	𝛿𝜑	 (7)	
We expand the action (3) in a Taylor series around the saddle point in order to get the second variation 

	 𝑆 𝜃, 𝜑 = 	𝑆 𝜃k, 𝜑k + 	𝛿𝑆 + 	0
\
𝛿\𝑆,	 (8)	

where 

	 𝛿\𝑆 = 	 𝑑𝜏 −2𝑖𝑠 sin 𝜃 𝛿𝜑𝛿𝜃 +	(𝑎𝛿\𝜃 + 2𝑏𝛿𝜃𝛿𝜑	 + 	𝑐𝛿\𝜑)
[
\

'[
\

,	 (9)	

with 
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	 	𝑎 = 	 b
rB
bcr

,								𝑏 = 	 b
rB

bcbd
,									𝑐 = 	 b

rB
bdr

	 (10)	

Since the 𝛿𝜃 and 𝛿𝜑 in (7) correspond to closed trajectories, they can be expanded in  Fourier series: 

	 𝛿𝜃 = 	 𝜃3𝑒
rtuv
wx

3y'x ,	 (11)	

	 𝛿𝜑 = 	 𝜑3𝑒
rtuv
wx

3y'x ,	 (12)	

and the second variation of the action in (9) written in terms of the Fourier coefficients 𝜃3 and 𝜑3: 
0
\
𝛿\𝑆 = 	𝛽 \{I fgh c|

[
𝑛 𝜑3𝜃3∗ − 	𝜃3𝜑3∗ + 𝑎𝜃3𝜃3∗ + 𝑏 𝜑3𝜃3∗ + 	𝜃3𝜑3∗ + 𝑐𝜑3𝜑3∗x

3y% .	 (13)	

At sufficiently high temperature, 𝛿\𝑆 has only one negative eigenvalue, giving correspondence 
between 𝛿\𝑆 and the Hessian at the saddle point. However, as the temperature is lowered, a second 
negative eigenvalue appears, signifying the crossover from the classical regime to a quantum 
tunnelling regime. Thus, the crossover temperature is the highest temperature at which the 𝛿\𝑆 has 
two negative eigenvalues. The expression for the crossover temperature can be written as: 

	 𝑇. = 	
�r'�.

\{*+I fgh c|
.	 (14)	

	
3.  Applications 
3.1.  Uniaxial spin system with a two-fold anisotropy 
In order to test our approach, we choose the simple and well-studied spin system with axial symmetry 
and transverse applied magnetic field: 

	 𝐻 = 	−𝐷𝑆�\ − 	𝐻�𝑆�,	 (15)	

here D is an anisotropy and 𝐻� is an applied field. The corresponding classical energy surface is: 

	 𝐸 𝜃, 𝜑 = 	−𝐷𝑠\ cos 𝜃\ − 	𝐻�𝑠 sin 𝜃 cos 𝜑 ,	 (16)	

with a saddle point at 𝜃k, 𝜑k = {
\
, 0 .		The crossover temperature obtained from eq. (14) is 

	 𝑇. = 	
��(\�I'	��)

\{*+
.	 (17)	

This solution is equivalent to previously published results for this special case (see eq. 13 in ref. [3]). 

 
3.2.  Uniaxial spin system with a four-fold anisotropy 
When eq. (14) is applied to a system with four-fold transverse anisotropy, described by the 
Hamiltonian:  

	 𝐻 = 	−𝐷𝑆�\ − 𝐵𝑆�� − 𝐶 𝑆�\ + 	𝑆'\ − 	𝐻�𝑆�,	 (18)	
the higher-order anisotropy terms are found to play a crucial role. Even for a small value of the 
parameter C (usually it is four orders of magnitude smaller than D), the crossover temperature 
becomes non-zero even in the absence of a field, as can be seen from figure 1. The crossover 
temperature in this case is  

	 𝑇. = 	
(����\�I�)(\�I'��I�'	��)

\{*+
.	 (19)	
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Figure 1. Dependence of 𝑇. on applied magnetic field, 𝐻�, for a systems with two-fold and four-
fold anisotropy. Solid line shows results for a system with two-fold anisotropy, eq. (15). The dashed 
line shows results for a system with four-fold anisotropy, eq. (18). All parameters are taken from 
ref. [6]. By adding higher-order anisotropy, the crossover temperature becomes finite even in the 
absence of a magnetic field. The insets show contour graphs of the energy surfaces (two-fold 
anisotropy below, fourfold above) at zero field and a field of 4 T. 

This example shows how the method works for more complex systems for which only numerical 
results have been reported previously.  

3.3.  Crossover temperature of Mn4 complex 
The molecular magnet Mn4O3Cl(O2CCH3)3(dbm)3 (Mn4 for short) is a trigonal pyramidal complex with 
a spin ground state corresponding to 𝑠 = 	 9 2. The Kramers degeneracy prohibits a molecule with a 
half-integer spin to tunnel. A transverse component in the Hamiltonian is needed to break the 
symmetry so as to allow for tunnelling [5]. The system is described by the Hamiltonian: 

𝐻 = 	𝐷 𝑆�\ −
0
�
𝑠(𝑠 + 1) + 𝐵�%𝑂�% + 𝐵��𝑂��,	 (20)	

where 𝑂�% = 35𝑆�� − 30𝑠 𝑠 + 1 𝑆�\ + 	25𝑆�\ + 6𝑠(𝑠 + 1) and 𝑂�� = 	
0
\
(𝑆�� + 𝑆'�). The application of 

our formula to estimate the crossover temperature gives  𝑇. = 	0.6	𝐾, which is in excellent agreement
with experimental measurements [5]. 

4. Conclusions
We have derived an analytical expression for the crossover temperature in spin systems characterized 
by a single magnetic vector. The crossover temperature corresponds to the transition from classical 
activation mechanism to temperature assisted quantum tunnelling. Using our formula, Tc , can be 
estimated given the magnetic configuration and Hessian at the first order saddle point on the energy 
surface characterizing the system. The formula has been applied to several single spin models, 
including a system with four-fold anisotropy. It is in agreement with previously obtained analytical 
results for simple axial spin system. It was also applied to a system with four-fold symmetry for which 
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only numerical simulations had been reported previously. Good agreement with experimental results 
were obtained for a molecular magnet containing Mn4. 
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