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Abstract. This work proposes an explicit analytical model for the surface potential of a 
colloidal nano-agglomerate. The model predicts that when an agglomerate reaches a certain 
critical size, its surface potential becomes independent of the agglomerate radius. The model 
also provides a method for identifying and quantifying the solute-indifferent charge in 
nanocolloids, that allows to assess the stability of toxicologically significant parameters of the 
system. 

1.  Introduction 
Biocompatibility of inorganic colloidal nanoparticles (NPs) depends greatly on their surface charge. 
This charge governs the state of agglomeration in nanocolloids, which, in turn, affects internalization, 
distribution, metabolism, and excretion of NPs in biological systems [1-6]. It was recently reported 
that the surface charge itself also has an impact on the toxicity of NPs [1,7-9].  

Synthesized metal oxide NPs in aqueous solutions can acquire surface charge through a number of 
mechanisms: adsorption and desorption of protons on surface hydroxyl groups; physical adsorption of 
ions; reversible and irreversible chemical adsorption of ions; isomorphic substitution [10,11]. Most of 
these processes are dependent on the pH of the solution. Therefore, the effect of the medium on the 
surface charge is usually studied by measuring the surface potential of agglomerated NPs in a relevant 
pH range. 

However, the part of the surface charge arising due to irreversible chemical adsorption and/or 
isomorphic substitution can be indifferent to the solution used for titration. When NPs are released into 
a solution of unknown chemistry, the species responsible for this constant charge may react with the 
medium, leading to neutralisation of their charge. As a result, the surface potential can significantly 
deviate from the expected values, presenting a considerable toxicological threat. 

During experimental studies of colloidal systems, one often observes agglomerates rather than 
individual particles. We assume that, while for solid particles charging occurs only on the surface, 
agglomerates, like porous particles, can exhibit volumetric charging. Consequently, it is important to 
focus theoretical studies of the colloidal charging phenomena not just on individual NPs, but on their 
agglomerates as well.  

In the present work, we propose an analytical model of a colloidal nano-agglomerate that allows to 
identify the presence of the constant solute-indifferent charge (SIC) and study its effect on the surface 
potential. 
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2.  Methods 
We consider a spherical agglomerate of metal oxide NPs. The agglomerate is immersed in a solution 
of a strong inert monovalent electrolyte in deionized water. The solution is isolated from atmospheric 
CO2. The pH of this colloidal solution can be varied using acid-base titration at constant ionic strength 
I = const . 

The agglomerate is assumed to be a porous particle. The volume fraction of void space in the 
agglomerate (porosity Ω ) depends on the ordering of constituent NPs and their hydration.  

Nanoparticles inside the agglomerate acquire surface charge by protonation and deprotonation of 
surface hydroxyl groups. They can also carry a SIC originating from isomorphic substitution and/or 
irreversible chemisorption. Due to the porosity of the agglomerate we assume that the adsorption and 
desorption of protons on NP surface occurs in the entire volume of the agglomerate. 

It is now generally agreed that the adsorption and desorption of protons happens on two types of 
surface hydroxyl groups, basic and acidic in nature respectively [12-16]: 

  M −OHb +H
+!

Kb
M −OH2

+  , (1) 

  M −OHa!
Ka
M −O− +H+  , (2) 

where M −OHb , M −OHa  - basic and acidic surface OH groups; Kb , Ka  - equilibrium constants for 
protonation (1) and deprotonation (2) reactions. We consider the reactive surface hydroxyls to be 
evenly split between acidic and basic type [13,14]. 

Surface density of hydroxyl groups for NPs usually lies in the range of γ S = 1− 20  nm-2 [10,12-
14,17]. It should be noted that the average density of reactive sites on NPs comprising the agglomerate 
could be lower than the values for individual NPs.  

When NPs do not posses the constant charge (SIC), the pH at which the particle’s surface charge is 
zero (point of zero charge) can be found as: 

 PZC0 =
pKb + pKa

2
,  (3) 

where PZC0  - point of zero charge in absence of SIC; pKb = − log10 Kb( )  and pKa = − log10 Ka( ) . 
Parameters pKb  and pKa  have the physical meaning of pH values at which half of the basic (acidic) 
sites are protonated (deprotonated). We can now express: 
 pKb = PZC0 − ΔpK   and  pKa = PZC0 + ΔpK ,  (4) 
where ΔpK = pKa − pKb . Values of ΔpK  for metal oxide NPs can span over a wide range of 
ΔpK = 1−14 [18]. 

Electrostatic potential ϕ  in the described system is governed by the Poisson-Boltzmann equation 
[10]. A number of assumptions were made to derive an analytical solution to the Poisson-Boltzmann 
problem for the potential inside and outside of the agglomerate. First, the Debye-Huckel 
approximation for low potentials in the system is used. According to this approximation, the maximum 
potential in the system should satisfy the condition: max(ϕ ) < kT e  ( k  - Boltzmann constant; T  - 
temperature; e  - elementary charge). Second, we consider only the non-saturated regime of 
protonation/deprotonation: pKb < pH < pKa . Finally, the internal space of the agglomerate is 
approximated with continuous distributions of effective volume charge density ρ  and dielectric 
permittivity εA : 

 ρ r( ) = e1−Ω
VNP

ZC +
P
2
10−ΔpH 1−

eϕ r( )
kT

⎧
⎨
⎩

⎫
⎬
⎭
−10ΔpH 1+

eϕ r( )
kT

⎧
⎨
⎩

⎫
⎬
⎭

⎡

⎣
⎢

⎤

⎦
⎥

⎛

⎝⎜
⎞

⎠⎟
+ εAε0 ⋅Ωκ

2 ⋅ϕ r( ) ,  (5) 

 εA = εNP 1−Ω( ) + εMΩ ,  (6) 
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where ZC  - average charge number of SIC per NP, P = SNP ⋅γ S ⋅10
−1
2
ΔpK

 - charge regulation parameter; 
VNP , SNP  - volume and surface area of primary NPs; κ 2 = 2I ⋅e2 εMε0kT  - Debye-Huckel screening 
parameter of the solution; εNP , εM  - dielectric permittivities of NPs and the medium (solution); ε0  - 
dielectric constant; r  - position vector. 

By solving the resulting Debye-Huckel problem we obtained the following expression for the 
surface potential of the agglomerate ϕS : 

 ϕS =
e

εAε0
⋅1−Ω
VNP

⋅
ZC + P ⋅sinh − ln(10) ⋅ ΔpH[ ]

α 2 ⋅ 1+ εM
εA

⋅ κR +1
αR ⋅coth(αR)−1

⎛
⎝⎜

⎞
⎠⎟

 , (7) 

where R  - agglomerate radius; α  - effective Debye-Huckel screening parameter of the agglomerate’s 
interior that is given by: 

 α 2 = e2

εAε0kT
⋅1−Ω
VNP

⋅P ⋅cosh − ln(10) ⋅ ΔpH[ ]⎛
⎝⎜

⎞
⎠⎟
+ Ωκ 2( ) .  (8) 

As follows from (8), the parameter α  consists of contributions from the surface charge of constituent 
NPs (first term) and from ions penetrating the void spaces between the NPs (second term). 

3.  Results and discussion 

3.1.  Surface potential as a function of agglomerate size 
From expressions (7) and (8) it follows that when  κR≫1 , the surface potential becomes independent 
of agglomerate radius. This behavior is illustrated in figure 1A. The saturated size-independent surface 
potential of the agglomerate is given by: 

 ϕS
Sat = e

εAε0
⋅1−Ω
VNP

⋅
ZC + P ⋅sinh − ln(10) ⋅ ΔpH[ ]

α 2 ⋅ 1+ εM
εA

⋅ κ
α

⎛
⎝⎜

⎞
⎠⎟

  (9) 

The critical radius above which the agglomerate’s surface potential becomes size-independent is 
defined only by the ionic strength of the solution. This relation is shown in figure 1B. 

 

Figure 1. A – surface potential as a function of agglomerate radius (normalized to the primary NP 
radius) at different values of ΔpH ; B – dependency of critical agglomerate radius on ionic strength 
of the solution; filled area corresponds to agglomerate radii above the critical value for which 
surface potential becomes independent of agglomerate size. 
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3.2.  Effect of solute-indifferent charge on the agglomerate’s point of zero charge 
The model of the agglomerate’s surface potential was developed under the Debye-Huckel 
approximation. Therefore, it is quantitatively valid only at low potentials. This condition is generally 
not satisfied throughout entire experimental surface potential curves. However, expression (7) is 
always applicable around the point of zero charge of the agglomerate. Consequently, we can use it to 
find the condition for zero agglomerate charge in case of non-zero SIC: 

 ZC
P

= sinh ln(10) ⋅ ΔPZC[ ] ,  (10) 

where ΔPZC = PZC− PZC0  - shift of point of zero charge in relation to its value in absence of SIC. 
Equation (10) shows that the presence of SIC shifts the agglomerate’s PZC  in relation to PZC0

(point of zero charge when SIC is zero): 
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this dependency is illustrated in figure 2A. As a result, it is possible to identify the presence of SIC by 
detecting such PZC shift.  

As shown by (3), PZC0  lies exactly in the middle between pKb  and pKa , which signify the onset 
of protonation and deprotonation saturation correspondingly. We use a numerical non-linear Poisson-
Boltzmann model of charged flat surface to demonstrate that non-zero SIC does not alter pH values at 
which protonation and deprotonation saturate (figure 2B). It is thus possible to assess the position of 
PZC0  as a mid-point between the points of saturation onset.  

 

Figure 2. A – point of zero charge shift ( ΔPZC ) as a function of average charge number of SIC per 
NP ( ZC ) at different values of charge regulation parameter P ; B – surface potential as a function of 
ΔpH  predicted by the numerical model of flat surface at different values of surface charge density 
of SIC. 

3.3.  Limiting cases of continuous agglomerate model 
We now consider the interior Debye-Huckel screening parameter α . According to (8), this parameter 
consists of contributions from NPs’ surface charge and ions in the inter-particle cavities. In a limiting 
case when one of these contributions significantly outweighs the other, expression (9) allows for 
further simplification. 
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The interior Debye-Huckel parameter α  reduces to just the NP surface charge contribution when 
the following condition is met: 

 
 

e2

ε0kT
⋅ SNP
VNP

⋅γ S ⋅10
−1
2
ΔpK

⋅ εNP + εM
Ω
1−Ω

⎛
⎝⎜

⎞
⎠⎟
−1

≫Ωκ 2 . (12) 

We denote this limit as Case A. For closed-packed agglomerates of NPs with site density γ S = 1  nm-2 
immersed in electrolyte solution with ionic strength I = 0.001  M, condition (12) is met when primary 
NPs radius is less or equal to 25 nm and ΔpK ≤ 4 . 

The simplified agglomerate’s surface potential expression for Case A is given by: 

 ϕS
Case A = kT

e
⋅

ZC + P ⋅sinh − ln(10) ⋅ ΔpH[ ]
P ⋅cosh − ln(10) ⋅ ΔpH[ ]⋅ 1+ εM

εA

⋅ κ
α

⎛
⎝⎜

⎞
⎠⎟

 . (13) 

For highly porous agglomerates/particles with large ΔpK  in solutions with high ionic strength, the 
opposite limiting case can be relevant: 
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⋅ SNP
VNP

⋅γ S ⋅10
−1
2
ΔpK

⋅ εNP + εM
Ω
1−Ω

⎛
⎝⎜

⎞
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−1

≪Ωκ 2  . (14) 

The interior Debye-Huckel parameter alpha then reduces to just the contribution from ions in 
agglomerate’s cavities. We denote this limit as Case B. For agglomerates with porosity Ω ≥ 0.5  
composed from NPs with site density γ S = 1  nm-2 this condition is met in solutions with ionic strength 
I ≥ 0.001  M when primary NP radius is greater or equal to 25 nm and ΔpK ≥ 6 . 

The simplified agglomerate’s surface potential expression for Case B is given by: 

 ϕS
Case B =

e ⋅ 1−Ω( )
ε0κ

2VNP

⋅
ZC + P ⋅sinh − ln(10) ⋅ ΔpH[ ]
εNP Ω 1−Ω( ) + εM Ω2 + Ω( )   (15) 

Expressions (13) and (15) explicitly show the dependency of agglomerate’s surface potential on the 
ionic strength of the solution. In both cases the effect of SIC on the potential increases at lower ionic 
strengths. Moreover, this dependency is suggested to be stronger for the case of highly porous 
agglomerates/particles (15). 

3.4.  Solute-indifferent charge assessment 
Simplified expressions (13) and (15) are always valid near to the agglomerate’s point of zero charge 
for the same reason as the original formula (7). Therefore, we can use these expressions to find the 
relation between the model parameters ( ZC  and P ) and the first derivative of the surface potential 
dependency on pH at the point of zero charge. 

The derivative of the surface potential curve at PZC  can be determined experimentally. Then, by 
differentiating expression (13) or (15) and using the relation (10), we can find the estimate for the SIC 
charge number per NP ZC  and the charge regulation parameter P : 
 ZC = tanh ln(10) ⋅ ΔPZC[ ]⋅Y , (16) 
 P = sech ln(10) ⋅ ΔPZC[ ]⋅Y ,  (17) 
where the Y  function is specific to the employed limiting case. For the Case A we have: 
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 , (18) 

and for the Case B: 
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 YCase B =
ϕS
′
ΔPZC

ln(10)
⋅ ε0κ

2VNP

e
⋅ εNP Ω + εM

Ω2 + Ω
1−Ω

⎛
⎝⎜

⎞
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  (19) 

where ϕS′
ΔPZC

   – experimentally determined first derivative of the surface potential dependency on pH 

at the agglomerate’s point of zero charge. Note that this assessment requires the additional knowledge 
of estimates for the agglomerates porosity Ω  and primary NP’s volume VNP  and dielectric 
permittivity εNP . 

4.  Conclusions 
We developed an explicit analytical model for the surface potential of a colloidal nano-agglomerate. 
Analysis of this model suggests that 

1) after an agglomerate reaches a certain critical size, its surface potential becomes independent of 
the agglomerate radius. The value of this critical size is defined solely by the ionic strength of 
the solution. 

2) Presence of solute-indifferent charge (SIC) in the agglomerate causes the point of zero charge to 
shift in relation to its value in absence of SIC. The sign of this shift coincides with the sign of 
SIC. 

3) The effect of SIC on the surface potential increases at lower ionic strength. This correlation is 
stronger for highly porous agglomerates/particles. 

4) It is possible to identify the presence of SIC by comparing the point of zero charge and the mid-
point between the pH values corresponding to protonation and deprotonation saturation onsets. 
The developed agglomerate model provides a method for quantitative assessment of the average 
amount of SIC per primary nanoparticle.  
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