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Abstract. The effectiveness of n-type nitrogen doping of bulk 4H-SiC grown on seeds of 

different orientation is studied by optical absorption measurements. The 4H-SiC ingots have 

been grown by physical vapour transport (PVT), with nitrogen doping from the SiC source. 

The nitrogen concentration was determined at room temperature from the absorption peak 

intensity at 464 nm, with account for the degree of donor ionization. It has been shown that 

4H-SiC ingots grown on Si (11-22) faces are significantly less doped by nitrogen than the ones 

grown on C (11-2-2). 

1.  Introduction 

Silicon carbide is a very significant material for high-power and high-temperature electronics because 

of its wide energy gap, high breakdown field and thermal conductivity [1]. SiC ingots of large 

diameter can be grown by physical vapour transport (PVT) on their own seeds. The most prominent 

n-type dopant for silicon carbide is nitrogen, and doping is carried out from the gas phase by adding 

nitrogen (N2) into the inert atmosphere (Ar). However, the raw material (SiC powder) appears to be an 

additional source of nitrogen, leading to unintentional variations in the doping level.  

Despite the fact that seeds of basal (0001) orientation are the most popular for PVT growth of SiC, 

one can also use other orientations, which may be interesting from several points of view. Firstly, 

some groups have demonstrated the possibility of an increase of charge carrier mobility in the channel 

of the field effect transistor implemented on a (11-20)-face, compared to that on the basal plane [2]. 

Secondly, the usage of the substrates of prismatic orientation (11-20) for light-emitting structures can 

reduce the effect of high piezoelectric and spontaneous polarization along the [0001] axis, and so to 

increase radiative recombination efficiency [3,4]. Thirdly, because of the strong dependence of the 

defect structure `on the growth direction, i.e. seed orientation, the ingots grown on the prismatic seed 

can be described as defect-free, concerning the defects propagating along the [0001] direction, namely 

threading dislocations and micropipes. 

It should be noted that SiC doping levels, even under identical growth parameters, should be 

different for various seed orientations due to the different incorporation kinetics of nitrogen. The aim 

of this work is to study the effectiveness of n-type nitrogen doping of bulk 4H-SiC during growth on 

seeds of various orientations by means of optical absorption measurements. 
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2.  Experimental setup  

4H-SiC ingots were grown using the modified Lely (PVT) method in a reactor with resistive heating 

of the crucible [5]. The growth temperature measured in the bottom of the crucible was 2150
o
C, and 

2060
o
C at the cap of it. The pressure during growth was 3.5 Torr. The gas atmosphere was argon of 

high purity, or Ar and N2 (5% vol.) mixture for intentional nitrogen doping (sample N-2). The nitrogen 

incorporated in the rest of the grown ingots was from the SiC source. The temperature gradients were 

in the range of 10-20 K/cm. The duration of the growth was 40 hours. The average growth rate was 

about 0.5 mm/hour for all the experiments. The seeds fixed at the top of the crucible were 4H-SiC 

substrates. As a source we used the silicon carbide powder of 100 microns, manufactured by Saint-

Gobain (Norway). 

Wafers of (0001) and (11-20) orientations were cut from ingots grown on standard off-cut (000-1) 

C seeds with an inclination of 4 degrees to [11-20]. The (11-22)- and (11-2-2)-oriented wafers were 

cut from ingots grown on seeds of the same orientations, correspondingly. Initially, (11-22)-oriented 

4H-SiC seeds were cut from an (000-1)C ingot at the angle of 73° with respect to the basal plane.  

The wafers were faceted by two crystallographically non-equivalent faces, i.e., quasi-polar silicon 

Si(11-22) and carbon C(11-2-2). The studied samples were approximately rectangular with linear sizes 

of 51×15 mm. The 4H-SiC single crystals were grown simultaneously on seed faces of both polarities 

in one experiment.  

Prior to the optical measurements, all wafers under consideration were subsequently subjected to 

mechanical grinding, polishing, and chemical etching in the KOH melt (600°C, 15 min). The 

parameters of the studied wafers are presented in table 1. 

Table 1. Parameters of the studied 4H-SiC samples. 

Sample 

number 

Seed 

orientation 

Surface Thickness, 

μm 

Comments 

N-1 (000-1) C 590  

N-2 (000-1) C 680 N2 doping 

P-0 (11-20) no 965  

Si-1 (11-22) Si 920  

Si-2 (11-22) Si 920  

Si-3 (11-22) Si 920  

Si-4 (11-22) Si 925  

C-1 (11-2-2) C 705  

C-2 (11-2-2) C 725  

C-3 (11-2-2) C 670  

C-4 (11-2-2) C 630  

 

The optical setup was based upon a VERTEX 80 Fourier-transform infrared (FTIR) spectrometer 

equipped for spectra measurements in the 0.4 – 1.1 µm range. This setup enables rapid registration of 

the spectra with a high signal-to-noise ratio. The samples were placed into a specialized accessory to 

perform transmission and reflection measurements in the same spot of the sample. The light incidence 

angle was 11°, corresponding to a ~4° angle inside the SiC crystal – which is rather close to normal. 

The probe beam was polarized by a linear polarizer, and the studied samples were rotated in order to 

change the angle between the optical axis of the crystal c and the electric field vector of the incident 

electromagnetic wave E. All the measurements were carried out at room temperature. 

3.  Results and discussion 

It has been described in several works [6-8] that nitrogen-doped n-type 4H-SiC exhibits specific 

optical absorption in the visible range, which is dependent on the polarization of the incident light. In 

order to evaluate this effect in our case, we have measured the transmission T(λ) and reflection R(λ) 
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spectra of an (11-20) oriented sample in the extreme cases of the electric field vector E parallel and 

perpendicular to c axis (figure 1).  

 

  
Figure 1. Transmission and reflection spectra of a 

typical nitrogen-doped 4H-SiC sample of (11-20) 

orientation for different light polarization. 

Figure 2. Absorption spectra of the nitrogen-

doped 4H-SiC sample (figure 1) in the case of 

different light polarization. 

 

As can be seen from figure 1, the transmission coefficient T of 4H-SiC decreases significantly at 

λ ~ 0.46 µm – or at λ ~ 0.6 µm, depending on the polarization – which implies the presence of 

absorption bands. The absorption coefficient of the wafer material a (cm
-1

) can be determined from the 

measured transmission T and reflection R coefficients. The transmission coefficient of the plate-

parallel sample in the case of normal light incidence is defined by the following expression: 
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where d is the sample thickness (cm), and R0 is the reflection from a single sample-air interface. 

The reflection coefficient of the same sample is described as follows: 
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In the equations (1) and (2), it is taken into account that multiple reflection of light occurs from the 

front and rear edges of the samples. The solution of these equations for a at each wavelength allows 

one to determine the absorption spectra a(λ) of the sample material without the exact knowledge of 

R0(λ). The absorption spectra corresponding to the R(λ) and T(λ) of the n-type 4H-SiC sample from 

figure 1 are shown on figure 2. 

It can be seen that 4H-SiC exhibits strong absorption at λ = 464 nm, or at λ = 600 nm, depending 

on the relative orientation of the c axis and the electric field vector E of the polarized light. The origin 

of these absorption peaks is conventionally attributed to nitrogen-related optical transitions into the 

upper sub-bands of the conduction band [6]. 

In the work [9], an empirical relation between the absorption intensity at 464 nm (E ⊥ c) and the 

free electron concentration n (cm
-3

) in nitrogen-doped 4H-SiC has been proposed: 

 knaa  0 , (3) 

where a0 = 2.4±1.3 cm
-1

, k = (3.6±0.1)∙10
17

 cm
2
.  

In order to use the approximation (3) for determining carrier concentration in 4H-SiC, the condition 

of (E ⊥ c) must be fulfilled during the R(λ) and T(λ) optical measurements.  
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The corresponding absorption spectra (E ⊥ c) obtained by eq. (1) and (2) for two 4H-SiC (0001) 

wafers are shown on figure 3. It can be seen that the sample N-2, which was grown with additional 

doping by N2 from the gas phase, exhibits considerably stronger absorption. The according electron 

concentration value n obtained with (3) is by an order of magnitude higher than in the sample N-1, as 

can be seen from the inset of figure 3.  

 

  
Figure 3. Absorption spectra of 4H-SiC wafers 

grown on (0001) seeds with (sample N-2) and 

without (sample N-1) additional nitrogen 

doping.  

Figure 4. Ionization degree of nitrogen donors in 

4H-SiC as a function of nitrogen concentration at 

room temperature [10]. Dots mark the nitrogen 

concentration values for the samples from figure 3. 

 

To determine the concentration of nitrogen donors Nd from the free electron concentration values 

obtained with (3), we have accounted for the degree of donor ionization ξd given by the relation [10]: 
1/2 1

/ 1 1 4 exp 2 expd d d d
d d d d d

c B c B

N E N E
N N g g

N k T N k T
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where T is the lattice temperature (K),  gd = 2 is the degeneracy factor, kB is the Boltzmann constant, 

Nc = 3.25∙10
15

 T 
3/2

 cm
-3

 [11] is the effective density of states in the conduction band, and 

ΔEd = 0.059 eV [12] is the ionization energy of nitrogen in 4H-SiC. The ionization degree ξd decreases 

with the increase of nitrogen concentration, as plotted in figure 4. 

The concentration of the ionized donors can be described by a steady-state Gibbs distribution [10]: 
1

exp 1d d
d d

c B

ng E
N N

N k T



   
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  
.            (5) 

Assuming that the equilibrium electron concentration in an extrinsic (Nd >> Na) SiC at room 

temperature is given by the amount of ionized nitrogen donors (Nd
+
 = n), we come to the following:  

exp 1d d
d

c B

ng E
N n

N k T

  
   

  
.            (6) 

The nitrogen concentration values Nd obtained with (6) for 4H-SiC samples N-1 and N-2 are shown 

in an inset of figure 3. The results are in good agreement with the independent data of secondary ion 

mass spectrometry (SIMS) measurements.  

The described method of determining nitrogen concentration in 4H-SiC has been applied to study 

the crystals grown simultaneously on seeds of various orientations.  The absorption spectra a(λ) of the 

sample series grown on Si (11-22) and C (11-2-2) faces are shown on figure 5. The studied samples 

C-1 and Si-1 were cut from the part of each ingot which was in 4 mm from the seed, C-2 and Si-2 – in 
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5 mm from the seed and so on. The corresponding values of n in the studied wafers are listed on an 

inset of figure 5.  

 

 

  
Figure 5. Absorption spectra of 4H-SiC bulk 

samples grown on Si- and C- faces. The arrow 

marks the absorption peak used to determine the 

electron concentration n. 

Figure 6. Variation of nitrogen concentration in 

the (11-22) and (11-2-2) 4H-SiC samples plotted 

in the ingot growth direction. 

 

The nitrogen concentration values in the studied structures obtained with (6) are plotted in the 

figure 6. It can be seen that initiating the growth of 4H-SiC on the Si (11-22) faces significantly 

decreases the injection of nitrogen into the bulk 4H-SiC compared to the C (11-2-2) ones. In addition, 

a decrease of nitrogen concentration along the growth direction is observed, which is presumably 

caused by depletion of nitrogen in the SiC source. The obtained results allow us to conclude that 

growth of 4H-SiC on a Si (11-22) face can be used to obtain lightly doped bulk material. 
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