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Abstract. We obtain from the first principles a generalized Clausius-Mossotti relation
describing the dielectric permittivity of a semi-infinite artificial periodic structure. The
obtained expressions include the spatial dispersion and permit defining resonant conditions for
propagating waves.

1. Introduction

Periodicity changes the dielectric properties and, consequently, determines the propagation of
electromagnetic waves in periodic structures of various types [1-3]. Periodic structures are widely used
in different applications, e.g., in new and perspective class of materials — photonic crystals and
metamaterials [4], for producing high-performance filters, in resonators, signal dividers, microwave
electronics, etc.

Photonic crystal is a periodic structure which allows controlling light by opening a bandgap within
a range of forbidden frequencies. Theoretical calculations of a light propagation in photonic crystals
are based on the general theory for periodic structures [5].

In this work we develop the so called local field theory for the case of semi-infinite artificial
periodic structure. In our recent paper [6] we considered an infinite structure and now demonstrate that
existence of the surface leads to the additional anisotropy and, thus, changes the tensor structure of the
dielectric permittivity. The method we use is based on the direct solving Maxwell's equations, and it is
known that in case of amorphous medium the natural changing of the dielectric properties near the
surface occurs [7, 8].

2. Dielectric properties of semi-infinite artificial periodic structure
We consider the semi-infinite periodic structure occupying half-space z>0 composed of N

anisotropic particles with the same polarizability ¢; (a)) :
a;(0)=a, (0)(5; —eg; ) +a (w)ee;. (D)
Let the external field E° act on this structure. One can write a solution of the Fourier transform of

Maxwell's equations in a medium in the dipole approximation. The microscopic field acting on the a -
th particle can be written as [6, 9]:

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
BY of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Published under licence by IOP Publishing Ltd 1



CORSCS2015 IOP Publishing
Journal of Physics: Conference Series 740 (2016) 012012 doi:10.1088/1742-6596/740/1/012012

E™ (R, 0)=E (R, o)+

1 3 mic - (2)
+2—ﬂzjd ISij(I,a))ajk(a))Zb:Ek (R, @)exp{-il(R, -R,)},
where
_ K1)
Sij(l’a))_ |2_k2_i0’ (3)
k= w]c, )

where index b corresponds to all the other particles of this structure with the exception of a -th
particle. Equation (2) can be solved only approximately because of N >>1.

The addend in equation (2) is formed by the sum of the fields of the rest particles of matter. The
contribution of any particle depends on its position relative to the a -th particle. It determines the
dependence of the effective field on the mutual arrangement of the particles, i.e. in fact the structure of
matter.

Let W(Rba) be the probability density of finding the b -th particle at the distance R,, =R, — R,
(k =1 N —1) from the a -th one:
1 N
w(Rba)=W26(Rba—Rm). (5)
m=1

Let us replace E™ in the first approximation in equation (2) with its averaged over other particles
value called the local field E"™:

E”(R,w)=E (R,a))+2—1ZZN:Sij (-Rp o), (0)E* (R+R,, ), (6)
T m=1
where
Sy (-R,@) = [d°IS; (I, 0)exp{~ilR}, (7)

We take into account that all the particles are located only in the region z >0.
One can find the macroscopic field by averaging equation (2) over the coordinates of all the
particles:

E (R 0)=E (R o)+

+2—71[2jd3|sij (lLo)a, (a))<zb: E (R, 0)exp{-il(R, - R)}>, ®
where
<Zb: E° (R, 0)exp{-il(R, - R)}> =g j d°R'E™(R”, @)exp{-il(R"-R)}. (9)
Then, the macroscopic field can be obtained in foir;lo

E (R, ®)=FE (R,a))+2i7rznzr+J;>od3R’Sij (-R"0)a; (0)E* (R'+R, ). (10)

The macroscopic field is expressed through the local field using equations (6) and (10):

E,(R,w)=E™ (Ro)+——;n [ d°R'S (R, 0)a; (0)E*(R'+R,0)-
L 220 (11)

~5.7 mzﬂsij (-Rp. @), (0)E* (R+R,,0).

Equation (11) can be written in variables (q, , Z) :
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E (a.z,0)=E*(q,z,0)+

1 ) - [; ' oc !
eyl [ d°RexpfiaR'}s; (-R.o)a, (0)E*(q.2+2',0)-

2'+Z>0
13 oc .
_2_”2;8” (-Ry, @)y (0)E*(9,2+Z,, )exp{igR, }.
A relation between the Fourier transforms of the local and macroscopic fields [10]:

t (0.2 0)E*(0,2.0)=E (0,2 0),
where
izn I d°R’exp{igR'} S; (-R',@)a; (@) -
Z'+Z2>0

ty (qu’w) =0y +

1 Q .
5 EGXP{'qu}Su (-R,, @) (o).

Let us make some auxiliary manipulations:

RR,
S; (-R,@)=[d%S; (1, @)exp{-ilR} =a(R)s; +b(R) F'{; .
Thus, tensor t, (0,2, @) has the form:
R'R!
tik(q,z,w)=@k+%n f d3R'exp{iqR'}{a(R')5ij+b(R')'—2‘}ajk(a))—
27" ;.70 R’
1 & . R"RT
—ﬁzexp{lqu}{a(Rm)ﬁj +b(R,) RZJ }aik(w),
where
7k . 7’ ]
a(R)=-2 =~ sm(kR)—ZEcos(kR),
21,2 2 2
b(R)=47[F\E< COS(kR)+GHR—ZkSin(kR)+6%COS(kR).

As a result, we find expression for the dielectric permittivity:
Ey (q, Z.a)) =0, + 47znaij (a))t;k1 (q, Z, a)),
where z>0.
Let us neglect the anisotropy of individual particles, i.e.:
a(w)=a, (0)=a (o).
We can find a tensor t;'(0,Z,®) by presenting tensor t, (0,2, @) in the form:

t (0,2,0) =¢,(,2.0) 8, +¢,(0.2,0) q(i;gk +

+C,(0,z,0)ee, +¢,(0,2,@)e0, +¢ (0,2, @) e,
From the condition

t (a.2, a)) =t,(a.z, a)),
one can see that
¢, (a,z.0)=c,(q,z,0).
Therefore, equation (20) goes to

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

21

(22)
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0O«

t, (0,2, 0)=c(09,2,0)5, +¢,(q,Z,® +
«(0.2,0)=¢,(0,2,0)3, +¢,(d )qz 23
+C,(0,2,w)ee, +¢,(0,z,@)(e,q, +a8 ).
Comparing equations (16) and (23) we find the coefficient ¢, (q,z,®):
¢, (a,z,.0)=1+2,(0,z,0)-a,(q,z,), (24)

where
al(q,z,w)zz—lzna(a)) j d°R’exp{igR’}a(R’);
4 Z'+Z>0
1 N - (25)
az(q,z,a))=2—ﬁ2a(a));exp{|qu}a(Rm).
The other coefficients can be obtained by multiplying equation (23) by J,;, €&, €0, :
c,(9,z,0)=b,(9,z,0)-b, (0,2, 0);
¢;(0,2,0)=b,(q,2,0)-b, (0,2, ®); (26)
¢,(9,z,0)=b;(q,z,0)-b, (0,2, ®),

where

B (az.0)=; zna(o) | d3R’eXp{iqR’}b(R'){1—§_Zl

4 24750

1 N ) Z
bz(q,z,a))=2—2a(a))2exp{|qu}b(Rm){ ——”;};

T m=1 R

1 . Z"
b3(q,z,a))=7na(a)) j d°R’exp{igR'}b(R")=5;

s 2'+2>0 (27)
! iexp{iqR 1b(R )Z—m
212 a(a))m=1 m m) Rz’

m

b (0,2 @) =%na(a)) I d°R’exp{igR’}b(R’)

Z'+Z>0

B (@2.0) =) Somliok, (R, )

Tensor ti;l(q, Z, a)) has the same structure as f;, (q, Z, a)) in equation (23):

b,(9,z,0)=

(9R)Z;.
qZRIZ '

. 09

tikl (CI,Z,a)) = dl(q’z’a))aik + d2 (qula))q_zl(+ (28)
+d, (0,2, 0)e, +d,(0,2,0)(e,0, + e, )-

For finding the coefficients d,,;,(0,Z,®) in equation (28) it is necessary to carry out some

additional calculations:

ty (0.2, )t (a,2,0)=6. (29)
To make the calculations easier, let us put
C V2, =C ,
.(az0)=Cc, G0)
d,(a,z,w)=d,,

where «=1,2,3,4.
The tensor coefficients in equation (29) are grouped:
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27949, 2
84 =dic,d +[ dic, +d,¢ +d,c, +d,Cq ]q—2 +[dic, +dy¢, +dyc, +d,c,0° Je,e; + an
+[d,c, +d,c, +d,c +d,c,|eq; +[dc, +d,c, +d,c +d,c]ae;,
after which one can write the system of equations for unknown coefficients:
dc =1
d,c, +d,c, +d,c, +d,c,g* =0; 32
d,c, +d.c, +d.c, +d,c,q° =0;
d,c, +d,c, —d,c, —d,c, =0.
It is easy to solve this system:
1
d,=—;
G
2.2
d. =— GG, +C,C—Q°C,
© o +oc, +og, o, —0%c])
(33)
d - C,C; +C,C, —q°cy
3

¢, (¢ +ec, +6c, +6,0, —g7c] )
C4
T2 22"
¢, +CC, +CC; +C,C, —(Q°C,
According to equations (18) and (28) the coefficients obtained determine the dielectric permittivity.

4

3. Discussion

The results obtained here describe the dielectric properties of semi-infinite artificial periodic structure,
which consists of particles. These particles can be of different nature: atoms, molecules, nanoparticles,
quantum dots, etc. equations (16) - (18) and (28), (33) describe this structure in the transparency band
of the optical frequency range in the dipole approximation. The expression for the dielectric
permittivity is obtained taking into account the spatial dispersion.
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