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Abstract. An approach of the empirical modes with a variable spatial-temporal structure is 

proposed and developed for the analysis of non-stationary nonlinear dynamics of the 

multimode superradiant lasers with a low-Q cavity and a strong inhomogeneous broadening of 

lasing transition in an active medium. It is shown that the approach makes it possible to 

analyze a number of complicated dynamical phenomena in an ensemble of the strongly 

interacting centers which constitute the active medium and are exposed to CW pumping. 

1.  Introduction 

A non-stationary lasing under CW pumping is a typical dynamical regime which takes place well 

above a lasing threshold. This regime, as a rule, shows the multimode oscillations which caused by 

nonlinearity of an active medium, but also may be originated from and complicated by various 

additional elements inserted into a laser, e.g., by nonlinear absorbers, optical delay feedback, etc. [1-

4]. A multimode lasing may exhibit highly non-trivial and even chaotic oscillations which are used in 

an optical information processing and a wideband spectroscopy. Usually, however, such oscillations 

are caused by an interaction of cavity modes which are quasi-stationary (weakly modulated) modes 

and have well-defined spatial structures dictated by an amplification in active medium and by the 

cavity features, e.g., reflections from the facet mirrors or distributed feedback reflections.  Under these 

conditions, a spatial-temporal evolution of a laser field is described by a superposition of the cavity 

modes with the time-dependent amplitudes and the spatial profiles, which are fixed and known 

beforehand. For the standard lasers with high-Q cavities, a resulting dynamical spectrum of the field is 

usually quasi-equidistant over frequency and homogeneous in time. For a one-dimensional model 

studied in the present paper, the high-Q cavity modes have the field envelops which are almost 

constant along a path of wave propagation.  

A laser dynamics becomes essentially different in the case of lasers with low-Q (bad) cavities 

where a photon lifetime, ET , is less than a polarization relaxation time (a lifetime of the optical dipole 

oscillations), 2T , of the individual active centers excited by pumping. For simplicity’s sake, we refer 

to a well-known two-level model of active medium [1, 4-7] and, for definiteness, we consider the case 

of a strong inhomogeneous broadening of the lasing transition, 
2

*

2 /2/2 TT  . Actually, a theoretical 

analysis of the spatial-temporal dynamics of the field and its spectral and correlation features in such 

CORSCS2015 IOP Publishing
Journal of Physics: Conference Series 740 (2016) 012007 doi:10.1088/1742-6596/740/1/012007

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



 

 

 

 

 

 

lasers, known as the superradiant lasers, cannot be based on the above-mentioned standard 

decomposition on neither ‘cold’ no ‘hot’ modes which are defined, respectively, by a cavity without or 

with taking into account the active medium (under the condition of a steady-state homogeneous 

population inversion of the lasing energy levels). The point is that the polarization of active centers in 

the superradiant lasers does not follow adiabatically a value of the local electric field and plays a part 

of an independent dynamical variable. The field itself flows out of a cavity rapidly and changes in time 

and space strongly. These effects result in a complicated spatial-temporal dynamics of the population 

inversion and, hence, lead to an efficient non-adiabatic coupling of cold and/or hot modes what makes 

those modes useless for the interpretation of collective emission phenomena, even in the case of a 

steady time-dependent lasing under CW pumping.  

A progress in modern technologies, especially in the field of semiconductor heterostructures, 

leaves no doubts about near fabrication of the dense (in space and spectrum) ensembles of active 

centers needed for such dynamically rich lasing in the low-Q cavities under CW pumping. (In the case 

of a pulsed pumping, this kind of a single-burst radiative cooperative phenomenon, known as a 

collective spontaneous emission, or superfluorescence, has been observed and verified in a number of 

active-center ensembles, e.g., the ensembles of quantum dots, impurity centers, excitons, and free 

electrons and holes in quantum wells placed in a quantizing magnetic field [7-15].) Among various 

regimes, the superradiant lasing includes, first of all, a generation of a sequence of the coherent 

bunches of pulses of collective spontaneous emission (Dicke superradiance) which is possible at a 

high rate of pumping, i.e., at a short enough time of incoherent relaxation and creation of inversion of 

the lasing energy levels of active centers, 1T . The related dynamics of inversion may also provide the 

conditions for a partial self-locking of the quasi-stationary laser modes which would result in another 

sequence of pulses with a repetition rate defined by the cavity round-trip time. The expected pulse 

durations in both sequences lie in the picosecond and/or subpicosecond timescale that gives good 

prospects for the superradiant-lasing applications in the optical information technologies and the 

diagnostic techniques for fundamental physics of many-particle systems.  

In order to understand the time-dependent space-inhomogeneous configurations of a lasing field in 

various steady-superradiant regimes and to interpret them properly, we suggest to use a well-known 

approach of empirical orthogonal functions (EOFs) which is based on a method of the main 

components [16] and have been widely employed in the analysis of observed space-distributed time 

series [17-19], including the correlation analysis of data [16, 20]. For the laser problem under 

consideration, this approach should be generalized and then may be called as an approach of Space-

Time Empirical Modes (STEMs). The definition and applications of the newly suggested modes are 

illustrated below on the basis of a numerical solution to the integral-differential Maxwell-Bloch 

equations for a 1D model of a cavity and an active medium with strong inhomogeneous broadening of 

a spectral line, 
2

*

2 /2/2 TT  . Namely, we consider a low-Q hybrid Fabry-Perot cavity with a distribute 

feedback (DFB) of the counter-propagating waves, where a generation of the superradiant pulses may 

be accompanied by a partial self-locking of the longitudinal modes without use of any additional 

technique of mode locking [21, 22].  

2.  Model of a superradiant laser 

According to a preliminary qualitative analysis of dynamics of a superradiant laser with high spatial 

and spectral density of active centers [23, 24], an output radiation under CW pumping consists, as a 

rule, of one or several quasi-chaotic sequences of ultrashort powerful pulses and cannot be described 

as a superposition of any hot modes calculated under the condition of a given homogeneous inversion 

of a lasing transition in active medium. For a hybrid DFB – Fabry-Perot cavity, a hot mode contains 

two symmetric counter-propagating waves, each being a sum of two inhomogeneous spatial harmonics 

with the close wave numbers slightly shifted from the Bragg (DFB) resonance. The hot-mode 

consideration is sufficient only for the analysis of a quasi-stationary generation regimes with relatively 

weak and long-term modulation of the mode amplitudes or for the evaluation of a lasing threshold as a 
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condition of the hot-mode instability [1, 5-7, 22], 
2 *

2 1c ET T  , where 
2

0 212 /c d N     is a so-

called cooperative frequency of an ensemble of active centers with a density 0N , d  a dipole moment 

of an active center at the lasing-transition frequency 21 ,   an average dielectric permittivity of an 

active medium. In our case of the strong inhomogeneous broadening of spectral line, when a 

parameter  
1

*

0 2cT


   is large, 0 1  , the lasing threshold is defined by a so-called active 

cooperative frequency [15, 22, 23]: 0/ 1 /c c ET    .  

In the considered 1D two-level laser model, the dynamics of the field inside a cavity, 

  0 0 0E=Re ( , ) ( , ) ,
ik z ik z i t

a z t e a z t e e


 

  
 

 (1) 

may be described by the standard semiclassical Maxwell-Bloch equations [1, 4-7, 22] for the 

dimensionless complex amplitudes of the counter-propagating waves, 0/ (2 )a a dN   , complex 

spectral density of the polarization of an active medium, 0 ))( (/p P dN f   , and related two 

components of the inversion of energy levels, namely, a slowly varying in space (real) component, 

( )n  , and a half-wavelength modulated (complex) one, ( )zn  , originating from the self-consistent 

beating of the counter-propagating waves. A similar half-wavelength modulated component of the 

polarization is ignored for simplicity’s sake as it plays a minor role under the condition of the strong 

inhomogeneous broadening of the laser transition. Using slowly varying dimensionless amplitudes, 

( )a ,   , and taking into account the Bragg coupling of counter-propagating waves due to the spatial 

modulation of a host dielectric permittivity, Re[1 4 exp(2 )]I i     , one can write down the 

Maxwell equations in a following form  

 ( ) ( ) ,ia i a p f d
I


 



 


          
  (2) 

where 0( ) / c      is a normalized frequency shift from a frequency of the Bragg resonance 0 ; a 

parameter 2 2

21/cI  
 
is small, 1I ; 21 0   is a central frequency of the spectral line of the 

active medium, which is assumed to have the inhomogeneous broadening of a Lorentz type 

(symmetric with respect to the Bragg resonance), 
2 2

0 0
( ) / ( )f       ; ct   and /cz c    

are dimensionless time and coordinate; /
c

L B B  is a cavity length, B , normalized by means of a 

cooperative length, )/(  cc cB  ; )/(1 2,12,1 TГ c  are dimensionless relaxation rates of the 

inversion and polarization of an active center. The boundary conditions describe reflections of the 

field at the laser facets with a given complex reflection factor, R  (related to an amplitude a ).  

3.  Traditional empirical modes 

The simplest generalization of the known approach of the cold or hot modes [21, 22] is a 

decomposition of the fields  a ,   , taken for a dense set of equally spaced grid points along a cavity 

( / 0,1,2,...,j D   , where /L D   is an array pitch which is equal to 0.1 in the following 

calculations), by means of the time independent Complex Empirical Orthogonal Functions (CEOFs), 

 i jv  , which are defined as the normalized eigenvectors of a time-averaged    1 1D D    – 

covariance matrix,    j la , a ,

  
    , composed of the gridded data set (the indices j  and l  
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enumerate the rows and columns, respectively) [16, 19, 20]:      
1

1

D ( i )

j i ji
a , Y v



  
     . An 

averaging is taken over the whole duration of the lasing under consideration (in what follows, it is 

equal to 16000 units of the dimensionless time  ), and the temporal dynamics is represented by the 

coefficients ( i )Y
in that decomposition.  

Although the described linear decomposition procedure takes into account only the snap-short 

correlations of the field at any pair of grid points, it may be sufficient for the analysis of some 

phenomena in the lasers with low-Q cavities. For instance, if the reflections from the laser facets are 

not important ( 1R  ), the Bragg (DFB) reflections are moderate (so that their characteristic 

parameter is bounded as b L   ), and the pumping is not too high, the superradiant lasing will 

contain few hot modes and demonstrate bunches of pulses with short timescales less or of the order of 

ET  and 2T , but may be quasi-periodic with a long bunch-repetition interval of the order of the time if 

an inversion repopulation by pumping, 1T , and, in a whole, will be described by even less number 

(maybe, one) of CEOFs with quasi-periodic amplitudes ( i )Y ( )
.  

 
Figure 1. An example of CEOF which describes well the laser emission and 

fails to depict the field inside a cavity. (a) The spectra of the fields, A , and 

(c) the corresponding oscillograms of the intensities, 
2

I a
, for a right-

propagating wave of the total field (the blue lines) and the field of the main 

CEOF (the black lines) at a laser facet. (b) A space-time dynamics of the 

amplitude of this wave 
 1

| |a  in the main CEOF. (d) The profiles of the right-

propagating wave of the total field (two thin blue lines), the main CEOF (a 

black line), and the most unstable hot mode (a dashed orange line), which is 

calculated for the fixed maximum inversion, ( ) 1n   . All profiles are 

normalized to their maximum values. The laser parameters are: 7,L   

0.1,R   0 4,   0.7,b   1 0.01,   2 0.03,   
6

25 10I


  . 

An example is given in figure 1, where an emission of a laser with the relaxation parameters 

1 23 20 ET T T   is well described by a single (main) CEOF, (1) (1)

1a Y v    (see a plot 1b and the black 
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lines in the plots 1a, c). In fact, it plays a part of a new hot mode, which can be defined with the use of 

a time-averaged spatial profile of population inversion. A field profile of this CEOF differs essentially 

from that of the main unstable hot mode (which is found for a homogeneous inversion of the active 

medium and shown by the dashed red line in a plot 1d) and makes it possible to characterize an output 

radiation with a 90% accuracy in energy without use of any STEMs. The description of an outgoing 

emission may be satisfactory for a large domain of parameters not too far from a lasing threshold. 

Nevertheless, the field patterns inside a cavity are varied as compared to the main CEOF pattern and 

need to be analyzed on the basis of the more adequate STEMs (cf. the thin blue lines, which show the 

field profiles at two moments of time when the maximum superradiant emission is achieved, and the 

thick black line, which shows the main CEOF, in the plot 1d).  

Moreover, if the pumping is rather strong and/or the facet reflections R  are not too weak (as 

compared to 1 and/or  tanh b ), the several more or less independent sequences of superradiant pulses 

with different pulse-repetition intervals may be formed due to the oscillations of neighbouring hot 

modes. Also, a regime of a partial self-locking of the quasi-stationary generating modes with quite 

uniform frequency spacing at the periphery of the lasing spectrum is possible. It would result in a 

formation of one more quasi-periodic sequence of pulses with a pulse-repetition interval which is 

approximately equal or two times less than a cavity round-trip time, i.e., of the order of the value ET . 

Bearing all these in mind, one can expect that an essential part of CEOFs will differ from the original 

cold modes of a cavity or hot modes of a laser, and the whole CEOF approach will be inefficient for 

the theoretical investigation of the superradiant-laser dynamics.  

4.  Time-dependent empirical modes 

Thus, in many cases a proper description of both the field inside a cavity and the output emission 

requires a further generalization of the empirical-orthogonal-function approach beyond the CEOF 

technique. Namely, it is required not only spatial, but also temporal correlation analysis of the gridded 

data set of complex fields  a ,   , taken at the discrete points along a cavity ( / 0,1,2,...,j D   , 

where /L D   is an array pitch) at the discrete moments of time ( / 0,1,2,...,Mk   , where 

/T M   is a time step equal to 0.1 in our simulations) within a common time interval [ ], T   , 

which is defined by a time scale T  under investigation. Systematic investigation of the multi-scale 

temporal dynamics may even require a use of several series of different generalized empirical modes 

with different time scales (relevant to various processes), e.g., the averaged periods of generation of 

the superradiant pulses of various types. In general, a proposed approach follows the techniques of a 

multidimensional spectral analysis [19, 25, 26] and a compact representation of spatial-temporal data 

sets [20]. Our approach to the study of the steady or slow varying regimes of lasing originates from the 

field decompositions (related to different above-mentioned time scales) over the so-called Space-Time 

Complex Empirical Orthogonal Functions (STCEOFs). According to a definition given below, 

STCEOFs are normalized eigenvectors of the above-mentioned time-averaged extended covariance 

matrix of a given gridded set of the time-shifted field data capable of taking into account the delayed 

interparticle interaction, which is owing to the physical processes in the active medium and plays a 

leading part in many cases. In what follows, depending on a lasing problem and generalizing the 

standard cold or hot modes, we will introduce also the Space-Time Empirical Modes (STEMs) as some 

individual STCEOFs (including their amplitudes as factors) or some particular steady-state 

superpositions of several STCEOFs  (again, including their amplitudes as factors).  

In the following examples, for definiteness, such an approach is performed for a single time scale, 

T L , chosen close to a half cavity round-trip time. The STCEOF construction is carried out 

separately for each counter-propagating field,  a ,   , represented by the above-mentioned gridded 

time series. Specifically, for an arbitrary time,  , we write down a complex column vector,  ( )a  , 
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which consists of   1 1D M   elements (enumerated by an index  ) grouped as a sequence of the 

consecutive 1M   snap-shorts (maps) of the field (at the moments k ),  j ka ,  , each given by a 

( 1)D  – column vector (an index j  enumerates mesh nodes along a cavity).  

The index   may be used in a dual form, j k , which clearly shows that the consecutive snap-

shorts (i.e., 1D  values of the field in the grid points 0, 1, ,j j j D   ) are arranged in a time 

series according to the growing counts via index 0,1, ,M:k      ( ) ( )j ka a   , i.e., 

   0 0 1 0 0 0 1 1 1 1 0 1, , , , , , , , , , , ,
T T

D D M M D Ma a a a a a a a a a  . What we have to find as 

the non-stationary STCEOFs are the normalized   1 1D M   – eigenvectors, iv , of an extended 

Hermitian covariance matrix,    a a 

  
   (  and   enumerate the rows and columns, 

respectively), which results from the time-averaging of the above-mentioned gridded time series: 

        0 1, , ,
T T TT j j j M

i i i iv v v v , where a ( 1D ) – column vector, j k

iv , is introduced for the 

given indices k  and i . These eigenvectors iv  contain an important information on a ‘fast’ dynamics 

of fields, including the time scales up to the given time scale, T .  

Complete dynamics of the fields, including also a ‘slow’ one with the time scales greater than T , 

may be seen from a full decomposition of each counter-propagating wave by means of the STCEOF 

basis and two types of the following expansion functions of time, i.e., the time-dependent complex 

amplitudes, ( ) ( )iY   and  
(D 1)(M 1)(i) * *

1
( ) ( ) ( )i iZ a v a v 


  

 


    (for details of a decomposition 

algorithm, see [25]):  

 
(D 1)(M 1) (D 1)(M 1)

(i) ( ) ( )

1 1 0

1
( , ) ( ) ( , ) ( ) ,

1

M
i i j k

j j k i

i i k

a Y a Z v
M

      
   

  

  


    (3) 

where T  . Here (i) ( )Y   are the complex amplitudes of the normalized spatial profiles of STCEOFs, 
( ) ( , ),i

ja    which are defined by the above time-averaging of a projection of the gridded time series 

onto the eigenvectors iv  within the time interval T . The terms in the above decomposition of field 

over the STCEOF basis, ( ) ( , ),i

ja    like in the similar decomposition over the CEOF basis, ( )i jv  , 

are arranged according to the decreasing order of eigenvalues corresponding to the eigenvectors iv , 

since each eigenvalue of an extended covariance matrix is proportional to a relative power of a given 

STCEOF with respect to a power of the complete laser field. The time scales of these STCEOFs 

(including their complex amplitudes), ( ) ( )( ) ( , ),i i

jY a    are well defined, different and, as a rule, 

become shorter and shorter for higher numbers i, so that the first STCEOFs are responsible for slower 

dynamics than subsequent ones. We expect that, to pick out qualitatively the main features of the field 

dynamics in a superradiant laser, it is sufficient to consider several first STCEOFs, which contain, say, 

90% or 99 % fraction of the power of laser field.  

A field at a laser facet, for instance, at the point 0  , is equal to the same superposition of all 

STCEOFs (if the reflection factor, R , is taking into account), so that each STCEOF contribution is 

defined by a product of the time-dependent complex amplitude, ( ) ( )iY  , and the known function of 

time, ( )

- ( 0, )ia   . For an opposite laser facet, a field of the counter-propagating wave at the point 

L   consists of the sum, 
(D 1)(M 1) ( ) ( )

1
( ) ( , )i i

i
Y a L  

 

 
 , of all similar STCEOFs, ( ) ( , )ia L   .  

5.  Examples of the space-time empirical modes 
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Figures 2 and 3 show an example of a quasi-chaotic emission of a sequence of superradiant pulses 

originated from a cooperative dynamics of the several different spectral subensembles of active  

 

 
Figure 2. A spatial-temporal structure of the contribution of the right-propagating wave, 

a , to (a) the total field, (c) the field of the main CEOF, and (d) the field of the first 

STCEOF defined with a use of a time scale 12.5T  . (b) The typical profiles of the right-

propagating wave within the total field (two thin colour lines), the main CEOF (a blue line), 

and the most unstable hot mode (a dashed black line) calculated for the fixed maximum 

inversion, ( ) 1n   . All profiles are normalized to their maximum values. The laser 

parameters are: 10,L   
/ 2

0.1 ,
i

R e


  
0 4,   1,b   

1 0.01,   
2 0.02,   

6
25 10I


  . The 

contours of a plot (d) are put onto a plot (a) in order to compare the dynamics of the total 

field ( a
 ) and the field of the first STCEOF (

 1
| |a


). 

centers, or, in other words, caused by the instabilities of several different hot modes of the laser. 

According to figure 2, a travelling-wave nature of the total field is well described by the first STCEOF 

which contributes about a quarter of the total power. A field of the main CEOF, which contributes a 

bit higher than a half of the total power, has nothing to do with this travelling-wave phenomenon and, 

in fact, contains an information on some averaged field profile in the cavity only. It is useful to 

combine two first STCEOFs in one STEM. Then, the latter contains a bit less than a half of the total 

field power, covers a well-defined range of spectrum (see figure 3b), and yields a precise, complete 

description of the sequence of the superradiant pulses emitted by a subensemble of the active centers 

which have spectral localization in a vicinity of the photonic bandgap (owing to the Bragg DFB) and 

are closely related to the most unstable two hot modes situated at the bandgap edges. A typical 

duration of these superradiant pulses is of the order of the cavity lifetime, 8ET  , and much less than 

the relaxation time of polarization, 2 50T  . Similarly, the next STCEOFs make it possible to describe 

other sequences of superradiant pulses emitted by the neighbouring spectral subensembles of active 

centers.  
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Figure 3. The spectra of the total field (the grey lines on the plots (a) and (b)), the field of the 

main CEOF (a red line on a plot (a)), and the main STEM formed by a superposition of the first 

two STCEOFs (a green line on a plot (b)). A comparison of the oscillograms of an intensity, 
 1 2| |I a , of the field of the main CEOF (a red line on a plot (с)) and the main STEM (a green line 

on a plot (с)) is also shown. The laser parameters are: 
10,L 

 
/20.1 ,iR e 

 0 4,   1,b   

1 0.01,   2 0.02,   
625 10I   . 

 

 

Figure 4. (a) An oscillogram of the intensity, 
2

I a
, of a right-propagating wave. (b) A spectral 

distribution of the population inversion,  n  , (at a moment of time when a superradiant pulse is 

emitted) and a spectrum of the field, A , at a laser facet. (c) A correlation function, 

/ 2 / 2
* 2

/ 2 / 2
( ) ( ) | ( ) |

T T

T T
K a t a t dt a t dt

 
   , of the field at a laser facet for a time-averaging interval 

much greater than a typical interval between the bunches of superradiant pulses ( 1000T ). (d) A 

dynamical spectrum of the population inversion of the lasing transition. The laser parameters are: 

20,L   0.1,R   
0 13,   3,b   

1 0.01,   
2 0.03,   6

2.3 10I


  . 

A STEM-based analysis provides a deep qualitative insight into the straightforward numerical 

solution to the integral-differential equations of a superradiant-laser dynamics [21-24, 27-30] and 
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makes it possible to pick out the important features of the above-mentioned regimes of oscillations 

under CW pumping. In a rest part of the paper, we will consider one such regime which takes place  

 

a b 

 

c d 

 

e f 

 

g h 

 

 

Figure 5. The spatial-temporal dynamics of the amplitude, | |a
, of the right-propagating field and 

the spectrum of this field, | |A
, at a laser facet in the case of the multimode oscillations under CW 

pumping. (a), (b) The total field and its spectrum. (c), (d) The field and spectrum of the first 

STCEOF which describes one independent superradiant mode (shown by black on a grey 

background of the total spectrum). (e), (f) The field and spectrum of the second STCEOF which 

describes another superradiant mode and demonstrates a nonlinear interaction with the quasi-

stationary lasing modes from a right-hand side of the total spectrum. (g), (h) The field and spectrum 

of a combined STEM which is defined as a superposition of seven STCEOFs, from 4
th
 to 10

th
 ones 

(again shown by black), and represents the main part of a pulse formed due to the self-mode-

locking effect. All STCEOFs are calculated with a use of a time scale 20T  . The laser parameters 

are: 20,L   0.1,R   
0 13,   3,b   

1 0.01,   
2 0.03,   6

2.3 10I


  . 

CORSCS2015 IOP Publishing
Journal of Physics: Conference Series 740 (2016) 012007 doi:10.1088/1742-6596/740/1/012007

9



 

 

 

 

 

 

not far from a superradiant threshold in the case when a spectrum of the excited hot modes of a low-Q 

combined DFB – Fabry-Perot cavity is enriched due to a mutual action of the weak reflections at the 

laser facets and a nonlinear coupling between the Fourier components of the superradiant field outside 

the photonic band gap and the spectrally remote quasi-stationary laser modes. Then, in general, the 

laser radiation has a form of a nonlinear superposition of a quasi-periodic or quasi-chaotic sequence of 

the ultrashort powerful superradiant pulses (figure 4a) and a quasi-periodic (more regular) sequence of 

the comparable pulses formed by the quasi-stationary self-locked modes of the Fabry-Perot cavity 

with an equidistant spectrum (figure 4b). The latter are locked, that is obey certain phase relations, due 

to an effect of saturation of a pulse absorption which takes place in the presence of the deep spectral 

holes of population inversion (figure 4b, a dashed line, and figure 4d) as it may tend to zero or even 

become negative during the action of the superradiant pulses.  

In the above example, a degree of correlation of the quasi-chaotic radiation at a laser facet is not 

high (less than 25% in figure 4с) because there are continuous beatings between some pulses of more 

or less independent origin which are comparable in power and have different time scales. Mainly, 

these are the partially formed superradiant pulses which are generated in the two spectral channels at 

the edges of the photonic band gap and have a duration of the order of the relaxation time of 

polarization, 2 1 5 34ET . T  . A repetition interval is on the order of time it takes the pumping to 

restore a high level of the population inversion, 1 100T  . These pulses interfere also with the self-

mode-locked pulse which is travelling (and distributed) around a cavity and responsible for a 

formation of a sequence of more frequent emission pulses with an average repetition interval 

20T L   and even shorter duration less than the above-mentioned relaxation times.  

 

 

Figure 6. (a), (b) The oscillograms of the amplitudes of the counter-propagating waves, | |a , (at 

the opposite laser facets) of the first and second superradiant STEMs defined as the first and second 

STCEOFs, respectively. (c), (d) The spatial-temporal dynamics of the amplitudes of these waves, 

 ,a   . The laser parameters are: 20,L   0.1,R   
0 13,   3,b   

1 0.01,   
2 0.03,   

6
2.3 10I


  . 

The unique simultaneous generation of the two pulse sequences comparable in power and different 

in the spectral and temporal scales (both may differ by many times) is worth to analyze in detail by 

means of the universal STCEOF basis (figure 5). Note that a straightforward modeling of the 
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Maxwell-Bloch equations does not allow one to separate the space-time structures of individual modes 

under consideration, and an actual experiment has nothing to say on this account as well.  

According to figure 5, the discussed complicated quasi-chaotic oscillations (shown in figures 4a 

and 5a), in fact, result from a combination of three quite regular dynamics separated in spectrum and 

described by a pair of the superradiant STEMs, which correspond to the 1
st
 and 2

nd
 STCEOFs, 

respectively, (figure 5c, e, figure 6) and an additional combined STEM, which is formed by a group of 

the 4th to 10th STCEOFs (figure 5g, figure 7) and represents the main part of the self-mode-locked 

pulse. An interaction of the latter with the two superradiant modes is mediated by third STCEOF 

which is not shown in the left column of figure 5.  

 

 

Figure 7. The oscillograms of the amplitudes of the counter-propagating 

waves, 
 

| |
S

a , of the combined STEM (see a right-hand side of the 

spectrum in Fig. 5h) related to the main part of the round-travelling pulse 

which is formed by the self-locked hot modes and produces an output 

radiation from the right (a, a red line) and left (c, a black line) laser facets. 

(b) The spatial-temporal dynamics of the amplitudes of the right-

propagating (the red contours) and left-propagating (the black contours) 

waves, 
   | , |
S

a   , of the same STEM. The laser parameters are: 

20,L   0.1,R   
0 13,   3,b   

1 0.01,   
2 0.03,   62.3 10I   . 

The superradiant STEMs, each of them consists of two counter-propagating waves with a smooth 

(within a cavity length scale) non-stationary spatial structure, are emitted simultaneously from the  

opposite laser facets (see two pairs of curves,  (1)a   and  (2)a  , in figure 6a, b and, hence, have a  

standing-wave (mode) character (a shallow ripple in figure 6b and a weak phasing-out of the 

amplitude oscillations in figure 6d are not important statistically). The time scales of the first two 
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STEMs differ essentially ( 1 250   and 2 150  , respectively). The third (combined) STEM,  (S)a  , 

consists of the fields of seven STCEOFs, each of them contributes to a spectrum of two or three 

different hot modes of the laser. This STEM describes a spatial-temporal structure of the self-mode-

locked pulses which are periodic in time and extend over the whole cavity in such a way that they 

repeat themselves after every successive reflection at each laser facet. The counter-propagating waves, 

present in these pulses and shown in figure 7b by the red and black contours, re-emit each other 

continuously when moving across the Bragg periodic lattice of the dielectric permittivity in the DFB – 

Fabry-Perot cavity. It is the unique combine STEM that clarifies the complicated spatial-temporal 

structure of the round-travelling self-mode-locked pulses.  

6.  Conclusions 

The presented examples of the space-time empirical modes (STEMs) prove that these modes are 

useful for the analysis of complicated features of a strongly non-stationary field which are typical for 

the superradiant lasing in the low-Q cavity. Thus, the suggested STEM approach is an efficient tool in 

the dynamical theory and interpretation of various regimes of the superradiant lasers as well as in the 

development of their applications in the optical information processing, the wideband dynamical 

spectroscopy, and the diagnostics of the many-particle processes in condensed active media.  
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