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Abstract. In this study, we performed structural geometry and electronic properties 

calculations of calcium – based clay mineral for medicine application using first principles 

calculation by means of Density Functional Theory. Here, a kind of clay mineral used was Ca-

montmorillonite and it is applied as an absorber of dangerous metal contained in a human 

body, such as Pb, which causes osteoporosis. Osteoporosis is a disease associated with bone 

mass decreases. Since montmorillonite has ability to exchange its cation (Ca+2), therefore, it 

plays an important role in preventing or/and cure human bone from osteoporosis. In order to 

understand how Ca-montmorillonite can do detoxification in the human body, we firstly 

investigated the mechanism of Pb adsorption on the surface of Ca-montmorillonite in an 

atomic level point of view. We found that the repulsive interactions between H of OH groups 

with Ca and Pb yielding the rotation of the H of OH groups of montmorillonite. A relatively 

small movement of Ca was observed when Pb is adsorbed and the band gap of Ca-

montmorillonite becomes 1.87 eV narrow. 

1.  Introduction 

 

Osteoporosis is a disease where the bone mass of human body decreases. The bone mass decreases can 

be caused by exposure to a toxic substance such as heavy metals and pesticides. One toxic heavy metal 

of great concern is lead. The lead toxicity might affects the functions of every organ system in a 

human body. It is because lead has ability to mimic the actions of calcium in various body processes. 

When lead mimics calcium, it can interfere or even inhibit the process in which calcium is involved 

within the body. 

Calcium is the most abundant mineral in the body and plays many vital roles. The deficiency of 

calcium may lead the body to take calcium from bones to ensure normal cell function. In that case 

additional calcium needed to replace the calcium that is “borrowed” from the bones otherwise it can 

lead to weakened bones or osteoporosis. Since calcium is not made in the body, so additional calcium 

must be absorbed from the food we eat into the blood circulation as macro-molecules. However, in the 
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exposure lead toxicity, if we suffer from calcium and other nutrients in the body, ingested lead can be 

easily absorbed into the body and become incorporated into the body's tissues. Therefore, we need 

enough calcium-rich food consumption and remove lead from our body to maintain healthy bone 

tissue. 

To prevent the body from lack of calcium, many supplements contain calcium are produced. One 

of material that good for dietary is a calcium-montmorillonite (Ca-montmorillonite). Ca-

montmorillonite is an excellent edible clay-based mineral used to detoxify and to supply a calcium 

dose internally. Detoxification can work because montmorillonite has a large surface area and negative 

charge, therefore it can adsorb heavy metals within body [1,2]. The cation such as calcium in 

montmorillonite may exchangeable, released, and transported within the body. Hence, calcium of 

montmorillonite can be functioned as a supplement for bone healing. 

In order to understand how calcium-montmorillonite can be useful for the application of 

osteoporosis, investigation of the adsorption of Pb on the Ca-montmorillonite from atomic scale is 

important. Therefore, in this study, we investigated the structure and electronic properties of 

Pb/calcium-montmorillonite adsorption as a first investigation for osteoporosis application. 

2.  Model and Computational Method 

 

Montmorillonite is formed as a result of alteration of volcanic rocks. The structure of montmorillonite 

has been defined from our previous works [3,4] and more less similar to our model showed here 

except that the atomic substitution consist on it are different, therefore, it will not be explained in more 

detail here. In this study, we theoretically performed simulation of calcium-montmorillonite using the 

Density Functional Theory (DFT) within Kohn-Sham formula implemented in Vienna Ab initio 

Simulation Packages (VASP) [5,6] at an absolute zero temperature. The generalized gradient 

approximation (GGA) within the Perdew–Burke–Ernzerhof (PBE) functional was employed for the 

exchange-correlation energy [7]. The Brillouin zone was sampled using 5×5×1 Monkhorst-Pack k-

point grid and the cut-off energy was set to 410 eV. The total energies were converged to 0.01meV.  

The montmorillonite is configured by layers of alumina octahedral and silica tetrahedral. The 

isomorphic substitution was taken into account within those layers so that the chemical formula of a 

unit cell of montmorillonite change from Si8Al4O20(OH)4 into (Si7Al)(Al3Mg)O20(OH)4. The 

isomorphic substitution generates a net negative charge which is usually balanced by additional cation 

atom, in this case is divalent ions such as Ca
+2

. Hence, the chemical formula of montmorillonite after 

neutralized by Ca
+2

 is Ca(Si7Al)(Al3Mg)O20(OH)4, called Ca-montmorillonite. According to chemical 

formula, one of Magnesium atom replaced one of Aluminum atom in the alumina octahedral layer 

while one of Aluminum atom replaced one of Silicon atom in the silica tetrahedral layer. In this 

calculation, a number of atoms per unit cell of montmorillonite are 40 atoms and was repeated 

periodically. Addition of Ca and Pb atoms to a unit cell of montmorillonite produces 42 of total atoms 

per unit cell of Pb/Ca-montmorillonite system. 

 

3.  Results and Discussion 

 

In this section we present the results of the optimized geometry and the parameters related to the 

electronic structure of Pb adsorbed on the Ca-montmorillonite. Before understanding the mechanism 

of Pb adsorption on montmorillonite, we firstly observed the geometry structure and the electronic 

properties of the Ca-montmorillonite. The effect of the Pb adsorption on Ca-montmorillonite is further 

discussed. The optimized structures of Ca-montmorillonite and Pb/Ca-montmorillonite obtained from 

the DFT calculations are shown in Figure 1.   

As depicted in Figures 1a and 1b, where the optimized structure of Ca-montmorillonite viewed 

from YZ and YX planes are presented, Ca atom is located at the montmorillonite surface particularly 

at the ditrigonal cavity of montmorillonite surface. It is observed that there are three coordination 

numbers between Ca and three O atoms. Also, there is one coordination number of Ca and Al. These 
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coordination numbers correspond to the number of Ca-O and Ca-Al bonds. The occurrence of these 

ionic bonds prevents the Ca atom to infiltrate into the lower layer of montmorillonite which are the 

alumina octahedral layer and the bottom of silica tetrahedral layer. The Ca atom has the tendency to 

fill an area that isomorphic substitution occurred and distribute its electron charge density to its 

neighbor atoms, O and Al atoms, which results in formation of Ca-O and Ca-Al bonds. The strong 

bond between Ca and montmorillonite surface, indicated by Ca-O and Ca-Al bonds, implies a 

completion reaction or we may say that Ca and montmorillonite are both neutralized each other. 

As compared with our previous calculation of Li-montmorillonite, it was reported that Li atom 

can be infiltrate into the alumina octahedral layer by surpassing energy barrier of around 6 eV [3]. 

However in this calculation, Ca could not infiltrate due to some factors such as ionic radius of the Ca 

which is relatively larger than Li, the force of repulsion between Ca and H of OH is far greater than 

the force of attraction, and strong Ca-O and Ca-Al bonds. 

Figure 1c corresponds to the optimized structure of Pb adsorption on the Ca-montmorillonite 

(Pb/Ca-montmorillonite). The Pb/Ca-montmorillonite is modelled to determine the possibility of 

montmorillonite to adsorb toxic such as Pb within the human body. Despite the fact that in the real 

body, water is an essential and should be considered in the calculation to mimic the real environment 

of body. However, as a first investigation we only consider in a dry and vacuum environment for 

efficient DFT calculation. 

As it is mentioned earlier that Ca is needed as a supplement to maintain healthy bone tissue, 

then Ca from montmorillonite is predicted to detach from the surface of montmorillonite and entering 

the bone tissue. As a consequence, Pb allows attaching and adsorbs on montmorillonite surface and 

then through the chemical reactions Pb will flow out with urin from the body. Hence, in this 

calculation, Pb is predicted to be absorbed on montmorillonite surface. 

As shown in Figure 1c, Ca is a little bit protruding out from the ditrigonal cavity of 

montmorillonite surface as Pb inserted on top of the Ca-montmorillonite. This implies that our 

prediction that Ca can move from montmorillonite is confirmed by the DFT calculation and to some 

medicine application can be beneficial as an osteoporosis drug. Although the Ca atom is not fully 

detach from montmorillonite surface due to Ca-O or Ca-Al bonds formation and the need energy is 

high to break the Ca-O and Ca-Al bonds, however, if the system of Pb/Ca-montmorillonite involve 

water molecules then both Ca-O and Ca-Al bonds might weak and Ca could be exchanged and move 

from montmorillonite to bone tissue. 

Addition of Pb to the Ca-montmorillonite affects not only to the Ca but also to the orientation of 

the hydroxyl (OH) groups of montmorillonite. In a view of the YZ plane (Figures 1a and 1b), the H of 

OH which is closest to the Ca rotating in counterclockwise direction causing OH groups becomes 

parallel with the Y-axis (see Figure 1c). The charges distributed by Pb and Ca are responsible for the 

H of OH rotation since it induces repulsive coulomb interaction between H of OH with Ca and Pb. 

The Pb interaction with Ca-montmorillonite has much 0.14 eV/atom higher in total energy than the 

total energy of only Ca-montmorillonite. This is related to PbCaO compound resulted from the Pb 

interaction with Ca-montmorillonite. 

Figure 2 corresponds to the total density of states (DOS) of montmorillonite, Ca-

montmorillonite, and Pb/Ca-montmorillonite structures. Each DOS shows different energy gap that is 

5.693 eV, 4.185 eV, and 2.320 eV for montmorillonite, Ca-montmorillonite, and Pb/Ca-

montmorillonite, respectively. It is shows that the montmorillonite and the Ca-montmorillonite are an 

insulator with a wide band gap while the Pb/Ca-montmorillonite is a metallic because there is density 

of states that crossing the Fermi level. The energy gap of montmorillonite is large since in nature, 

montmorillonite mainly composed by silicate layers which has an insulator characteristic. While Ca-

montmorillonite has an energy gap lesser than montmorillonite by 1.508 eV because of p-orbital 

contribution of Ca. And finally after Pb adsorption on the montmorillonite surface, the system 

becomes metallic because of contribution of d-orbital of Pb.  
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Figure 1. The optimized structure of a unit cell of Ca-montmorillonite viewed from (a) the YZ-plane 

and (b) the YX-plane; (b) The optimized structure of a unit cell of Pb/Ca-montmorillonite viewed 

from YZ-plane. 

 

 
Figure 2. The total density of states (DOS) of the optimized structure of (a)  montmorillonite; (b); Ca-

montmorillonite; and (c) Pb/Ca-montmorillonite. The energy is shifted to Fermi level. 
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4.  Conclusion 

 

The calculation of Pb interactions with Ca-montmorillonite using the density functional theory (DFT) 

was done to study the structure and electronic properties of Pb/Ca-montmorillonite for osteoporosis 

application. The Pb with surface of Ca-montmorillonite yields the rotation of the H atoms of OH 

groups due to the occurrence of repulsive interaction between H of OH with Ca and Pb. In this study, 

the change electrical property of Ca-montmorillonite was observed through the density of state 

analysis. From the DOS, addition of Pb to the Ca-montmorillonite changes electronic properties from 

insulator to metallic. A relatively small movement of Ca was observed when Pb is adsorbed which 

implies that Ca-montmorillonite can be used as a supplement for body and can prevent osteoporosis 

since Pb can adsorbed strongly to montmorillonite. 
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