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Abstract. The Dirac equation of q-deformed hyperbolic Manning Rosen potential in D 

dimension was solved by using Supersymmetric Quantum Mechanics (SUSY QM). The D 

dimensional relativistic energy spectra were obtained by using SUSY QM and shape invariant 

properties and D dimensional wave functions of q-deformed hyperbolic Manning Rosen 

potential were obtained by using the SUSY raising and lowering operators. In the non-

relativistic limit, the relativistic energy spectra for exact spin symmetry case reduced into non-

relativistic energy spectra and so for the wave functions.  In the classical regime, the partition 

function, the vibrational specific heat, and the vibrational mean energy of some diatomic 

molecules were calculated from the non-relativistic energy spectra with the help of error 

function and imaginary error function. 

 

1. Introduction 

One of the important tasks of relativistic quantum mechanic is finding an accurate exact solution of 

Dirac equation for a certain potential. The bound state solutions of Dirac equation for some potentials, 

central and non-central, have been investigated by some authors [1-6]using NU method, SUSY QM 

method [7-11], and Romanovski polynomial method [12-16]. It is known that for very limited 

potential, three dimensional radial Dirac equation is exactly solvable only for s-wave (l = 0). 

However, the three dimensional radial Dirac equation for the spherically symmetric potentials can not 

be solved analytically for 𝑙 ≠ 0 states because of the centrifugal term ~𝑟−2[17-19]. the Schrodinger 

equation can only be solved approximately for different suitable approximation scheme. One of the 

suitable approximation scheme is conventionally proposed by Greene and Aldrich [23-20]. 

Furthermore, the extension in higher dimensionalspaces for some physical problems is very important 

in some area. The multidimensional non-relativistic andrelativistic physical systems have been 

investigatedby many authors, such asring-shaped pseudoharmonic potential[21], isotropic harmonic 

oscillator plus inversequadratic potential [22], Pseudoharmonic potential[23], Kratzer-Fues 

potential[24-25],hydrogen atom [26],modified Poschl-Teller potential[27], linierly energy dependent 

quadratic potential [28], trigonometric scarf potential [29], ring-shaped Kratzer potential [30]. 

In this paper we will attempt to solve the Dirac equation for a charged particle moving in a field 

governed by hyperbolic Manning Rosen potential [31] using supersymmetric quantum mechanic 

(SUSY QM) with idea of shape invariance. SUSY QM method is developed based on Witten proposal 

[32] and the idea of shape invariant potentialis proposed by Gendenshtein [33].  SUSY QM is a 
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powerful tool to determine energy spectrum and wave function of a class of shape invariant potentials. 

The relativistic energy spectrum obtained by using the idea of shape invariance and the wave functions 

are achieved by using lowering and raising SUSY operator. Some of hyperbolic and trigonometric 

potentials are exactly solvable within the approximation of centrifugal term and their bound state 

solutions have been reported in the previous papers[10-11]. In the non-relativistic limit, the relativistic 

energy equation reduces the non-relativistic energy equation that will be applied to study the thermal 

properties including vibrational mean energy U, and specific heat C[34,35]. This paper is organized as 

follows. Brief review of SUSY quantum mechanics is presented in section 2, solution of Dirac 

equations are presented in section 3 and conclusion is presented in section 4.  

 

2. Review of Supersymmetric Quantum Mechanics Approach Using Operator 

 

2.1. Supersymmetry Quantum Mechanics (SUSY QM) 

According to the definition proposed by Witten, in a supersymmetry quantum system there are super 

charge operators
iQ which commute with the Hamiltonian 

ssH [32] and given as 

 
  0, ssi HQ  with,  i = 1, 2, 3, …N (1) 

and  they obey to anti commutation  algebra  

 
  ssijji HQQ ,

 
(2)

 
with 

ssH  is called supersymmetric Hamiltonian. Witten proposed that the SUSY QM is the one 

dimensional model of SUSY field theory and he stated that the simplest SUSY QM system has N=2  

[32] where 

 
    1 1 21 2 2 ( )Q p m x     and     2 2 11 2 2 ( )Q p m x     (3)   

where 𝜎𝑖 are the usual Pauli spin matrices,  p i x     is the usual momentum operator, and )(x is 

superpotential. By inserting equation (2) into equation (1) we get, 
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Here 𝐻−  and 𝐻+ , are supersymmetry partner of the Hamiltonian, )(xV
and )(xV

 are the 

supersymmetry partner potential. To simplify the determination of the energy spectrum and the wave 

functions, the new operators are introduced given as 

 
)(
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 (5) 

A  as raising operator, and A  as lowering operator. By inserting equation (5) into equation (4) we get 

 AAxH 

 )( , and 

  AAxH )(   
(6) 

It is always possible to factorize the usual Hamiltonian as 

 

2 2

0 0 02
( ; )
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d
H H E V x a E

m dx
        (7) 

From equations (4) and (7) we get, 

000

2

00 );('
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);();()( Eax
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   (8) 

where )(xV  is the effective potential,  while )(x is determined hypothetically from equation (8) 

based on the shape of effective potential from the associated system. 
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2.2. Shape Invariance 

The supersymmetry only gives the relationshipbetween the eigenvalues and eigenfunctions of the two 

Hamiltonian partners but does not yield the actual spectrum [36]. The energy spectrum is obtained by 

applying the shape invariant condition proposed by Gendenshtein [33]. If the pair of supersymmetric 

partner potentials )(xV  are similar in shape and differ only in the parameters, then they are said to be 

shape invariant. More specifically, if ),( 0axV  satisfy the requirement that 

 
)();();( 11   jjj aRaxVaxV  (9)  

with  
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where j = 0,1,2,.., and a is a parameter in our original potential, V-,  whose ground state energy is zero, 

)( 0afa jj   where  f jis a function applied j times, the remainder )( jaR  is a’s dependence. 

The energy eigenvalue of the Hamiltonian H  is given by [33] 
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and by using equations (7) and (12) we get the total energy spectra,  
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(13)

 
Based on the characteristics of lowering operator, the ground state wave function is obtained from 

condition that, 
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The nth level of the the wavefunctions are obtained by applying raising operator operated to the lower 

wave function [37], given as  
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(15) 

The potential partners ),( 0axV and the SUSY operators,
A and A are obtained from equations (4), 

(5), and (8), and the energy spectrum from equations (8), and (12), the wave function obtained from 

equations (14) and (15). 

 

3. Solution of Dirac Equation in D Dimension 

The Dirac equation with the scalar potential )(rS


 and magnitude of vector potential )(rV


 is given as 

[38] 

 
   . ( ( )) ( ) ( ) ( )p M S r r E V r r      

 
(16) 

where M is the relativistic mass of the particle, E is the total relativistic energy, and p


 is the three-

dimensional momentum operator,  i  

 










0

0




 


 , and 













I

I

0

0


 

(17) 

with 


are the three-dimensional Pauli matrices and I is the 2 × 2 identity matrix. The potential in 

equation (16) is spherically symmetric potential, and we have taken 1 , c=1. The Dirac equation 

expressed in equation (16) is invariant under spatial inversion and therefore its eigen states have 

definite parity. By writing the spinor in D dimension [39-40]as 
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(18) 
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If we insert equations (17) and (18) into equation (16) and use matrices multiplication, we achieve 

 
 . ( ) ( ) ( ) ( )p r M S r E V r r      

 

(19)

 

 

 . ( ) ( ) ( ) ( )p r M S r E V r r         (20)

 In the exact spin symmetric case, when the scalar potential is equal to the magnitude of vector 

potential )()( rVrS


 , then from equations (19) and (20) we have 
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By applying the Pauli matrices, it is simply shown that if    2.. ppp 


 , then equation (21) 

becomes 
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(22) 

Since in D dimensions [39-40], 
22
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then we get the Dirac equation in D dimension for the case of exact spin symmetry by inserting 

equations (18) and (23) into equation (22) as  

 
      )()(2)(

)
2

3
)(

2

1
(

)( 22

22

2

rFMErFEMrVrF
r

D
l

D
l

r

rF
nKnKnK

nK 










 

          
(24)

 

By setting   1 2V V in equation (24) then the Dirac equation in equation (24) reducesinto one 

dimensional Schrodinger type equation. Forthe similar vector and scalar potentials which is given as 

hyperbolic Manning-Rosen potential,   2 2( ) ( 1) sinh 2 cothq qV r t tr t tr     , equation 

(24) becomes
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where 2/0  tr , 1 , 0v , and in this case, t > 0, thet parameter has to control the width of 

the hyperbolic Manning-Rosen potential. In order to solve theradial Dirac equation in equation (25), 

we use the approximation value for the centrifugal term as in Greene and Aldirch, and in Ikdhair 

[13,23],
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, for 1tr and 12/10 d . In the centrifugal approximation scheme, 

equation (25) becomes 
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in equation (26) then it becomes 
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and the effective potential in equation (29) is given as
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Equation (29) is solved using SUSY QM and by introducing thehypothetical super-potential as in [32-

33] 
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By inserting equations (30) and (31) into equation (10) and by taking the ground state energy as 0 we 

get 
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From equation (32) we have 
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and thus from all expressions in equation (33) we get the values of a,b, and 0  that have physical 

meaning as,  
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where equation (35) is the ground state relativistic energy equation of the system. By using equations 

(30), (33) and (34), the super-potential is obtained, given as 
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For 1aa  
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By comparing the coefficient of the variables in equations (37) and (38) we obtain the mapping 

parameters naaa . . . . ,,, 10   
given as: naaaaaa n  ,....,1, 10      

(40) 
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By using equations (37) and (40) we have  
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From equations (39) and (41) we can see that ),( 0arV have the same function form as ),( 1arV  and 

by using the shape invariance condition in equation (11),we get 
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Using generalizations of equation (42) and by using the mapping condition equation (40) we obtain 
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Using equations (14), (15), (42) and (43) we get  
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By inserting equation (27) into equation (46) we get
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By inserting equations (28)and (47) into equation (45) we obtain the relativistic energy equation given 

as
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with a and b are expressed in equation (47).

  The relativistic energy spectrum in Table 1 is obtained numerically from the relativistic energy 

equation in equation (48) with the help of the Math-Lab software application. 

 

Table 1. Relativistic energy spectra (𝑑0 =
1

12
, 𝑡 = 0.8, 𝑛 = 1, 𝑙 = 2, 𝑀 =

10 𝑓𝑚−1, 𝜂 = 2, 𝜈 = 1.5) 

Parameter 
𝐸(𝑓𝑚−1) 

𝑞 = 0.1 𝑞 = 0.2 𝑞 = 0.3 𝑞 = 0.4 𝑞 = 0.5 

𝐷 = 2 -13.88 -13.30 -12.72 -12.16 -11.69 

𝐷 = 3 -17.22 -16.40 -15.52 -14.65 -13.84 

𝐷 = 4 -21.54 -20.46 -19.24 -17.99 -16.81 

𝐷 = 5 -26.85 -25.47 -23.88 -22.22 -20.60 

𝐷 = 6 -33.15 -31.45 -29.44 -27.30 -25.18 
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In the non-relativistic limit, the relativistic energy reduces to non-relativistic energy as follows since

( ) 2E M   ,  is the non-relativistic mass, and ( ) NRE M E 
, NRE  is the non-relativistic energy then 

we have 

 NREMEMEME 2))((22 
       

(49) 

and equation (47) becomes 
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(50) 

The relativistic  energy equation in equation (48) for special case, D = 3,  reduces the the non-

relativistic energy given as 
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(51)  

which is in agreement with the energy of the hyperbolic Manning-Rosen potential obtained using other 

methods [41], and for any dimensions, D, the non-relativistic energy is given by 
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(52) 

with NRa is expressed in equation (50). 

For small value of d0, 0)
2

3
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l , therefore the non-relativistic energy is 

approximated by:   
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(53) 

By manipulating equations (7), (16), (17), and (41) we obtain the relativistic ground state and first 

excited state wave function as follows. By inserting equations (41) and (7) into equation (16), we get 

the radial ground state wave function as 
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(54)
 

The first exited state of wave function is obtained by 
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(55) 

and the second exited state wave function is
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(56)

 

 

and for the higher levels of the relativistic wavefunctionscan be obtained using SUSY operators. 
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3.1. Thermodynamical Properties 

In classical regimes [42], the vibrational partition function, vibrational mean energy, and specific heat 

are obtained from the non-relativistic energy equation in equation (53).The vibrational partition 

function is defined as 

 kT
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n
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

 

(57) 

k is Boltzman constant, Enl is non-relativistic energy spectrum of the system. The non-relativistic 

energy of the system in equation (53) for special case when v is very small then the non-relativistic 

energy in equation reduces to 

    221 2NRE t n   

                              

(58)

 
and therefore the vibrational partition function in equation (57) reduces to 
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(59) 

By setting 
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(60)      

                     

 

in equation (59) and in the classical regime when the temperature, T, is high enough, causes the value 

of   is high , and  is small then equation (59) could be written into integral form as 
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(61)
 

In this section, the thermodynamics properties will be expressed in terms of two 

mathemathicalfunctions: the Dawson function and the imaginary error function. The Dawson function 

or Dawson integral (named for John M. Dawson) is denoted as [43] 
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and the imaginary error function is defined by 
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(63) 

where erf is the error function given as 
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(64) 

By applying equations (58,61-64) the vibrational specific heat and the mean energy are obtained.The 

vibrational mean energy is  
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(65)

 

The vibrational specific heat is 
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(66)

 

The vibrational mean energy and the vibrational specific heat of the system of diatomic molecules 

governed by hyperbolic potential are calculated numerically using equations (65) and (66) with the 

help of Math-Lab software, which is shown in figure 1 below, 

 

 

 

 

 

 

 

 

 

 

 

 
    (a)                                                                                        (b) 

Figure 1. Graph of (a) mean energy ( , )U    as a function of  , (b)vibrational specific heat 

( , )C    as a function of  (for D=3) 

 

From figure 1(a) and 1(b) we see that vibrational mean energywhose is governed by q-deformed 

hyperbolic Manning-Rosen potential are positives and specific heat for system are negatives. The 

negative specific heat may occur  at the astronomical objects [44], at the glass transitions [45] and 

refers to previous research[46,47]. 

 

4. Conclusion 

The relativistic and non-relativistic energy equations for q-deformed the hyperbolic Manning-Rosen 

potential are obtainable by using SUSY quantum mechanics. The q-deformed hyperbolic potential is 

used to describe the behavior of diatomic molecules. In the non-relativistic limit, the relativistic energy 

equation reduces to the non-relativistic energy. By using the imaginary error function and the Dawson 

function, the vibrational partition function, specific heat and the mean energy are derived from the 

non-relativistic energy equation in the classical regime. 
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