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Abstract. We apllied asymptotic iteration method (AIM) to obtain the analytical solution of 

the Dirac equation in case exact pseudospin symmetry in the presence of modified Pöschl-

Teller  potential and trigonometric Scarf II non-central potential. The Dirac equation was 

solved by variables separation into one dimensional Dirac equation, the radial part and angular 

part equation. The radial and angular part equation can be reduced into hypergeometric type 

equation by variable substitution and wavefunction substitution and then transform it into AIM 

type equation to obtain relativistic energy eigenvalue and wavefunctions. Relativistic energy 

was calculated numerically by Matlab software. And then relativistic energy spectrum and 

wavefunctions were visualized by Matlab software. The results show that the increase in the 

radial quantum number nr causes decrease in the relativistic energy spectrum. The negative 

value of energy is taken due to the pseudospin symmetry limit. Several quantum wavefunctions 

were presented in terms of the hypergeometric functions. 

1. Introduction 

Schrodinger equation plays important roles for describing the behaviors of a particle at the 

microscopic scale for non relativistic system. For relativistic system will be used Klein-Gordon 

equation or the Dirac equation. Klein-Gordon equation for spin-0 particles and the Dirac equation for 

spin-1/2 particles[1,2]. The Dirac equation describes the motion of a relativistic particle with spin ½ 

which is widely used in solving problems of nuclear physics and high energy physics[3]. Spin 

symmetry in framework of the Dirac equation occurs when the scalar potential 𝑆(𝑟)is equal to the 

vector potential 𝑉(𝑟) and pseudospin (p-spin) symmetry occurs when 𝑆(𝑟) = −𝑉(𝑟)[4].The concept 

of spin symmetry and pseudospin symmetry have been recognized in and hadronic spectroscopes[5]. 

Spin symmetry has been applied to the spectra of mesons and antinucleon[6] while pseudospin 

symmetry concept is used to explain the quasi-degeneracy of the nucleon doublets[7], exotic nuclei[8], 

superdeformation in nuclei[9],and to establish an affective nuclear shell-model scheme[10]. Recently, 

has been studied about hidden pseudospin and spin symmetries and their origins in atomic nuclei. On 

the recent progress on the pseudospin and spin symmetries have been studied in various systems and 

potentials, including extensions of the pseudospin symmetry study from stable to exotic nuclei, from 
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non-confining to confining potentials, from local to non-local potentials, from central to tensor 

potentials, from bound to resonant states, from nucleon to anti-nucleon spectra, from nucleon to 

hyperon spectra, and from spherical to deformed nuclei[11]. 

The Dirac equation with various potentials have been solved, including the Hulthen potential and 

type-Coulomb tensor potential[12],the Woods-Saxon potential[13], the Pöschl-Teller trigonometric 

potential and tensor Coulomb potential[3], the Deng-Fan potential and the Coulomb potential[14], the 

Pöschl-Teller potential plus Manning Rosen potential[15], the modified Pöschl- Teller non-central 

potential[16], q-deformed Scarf II potential plus Coulomb-type tensor[17], the generalized Pöschl-

Teller potential plus trigonometric P ö schl-Teller non-central potential[18],q-deformed hyperbolic 

Pöschl–Teller potential and trigonometric Scarf II non-central potential[2], Scarf potential with new 

tensor coupling potential[19], the Deng-Fan and Eckart potentials with Coulomb-like and Yukawa-

like tensor interactions[20], tensor coupling on theMie-type potential[21],and others. The various 

methods have been used , included the Laplace transformation method[21], hypergeometric 

method[15], SUSY quantum mechanics[18], Romanovski polynomials[19], the Nikiforov-Uvarov 

method[2,16,20], asymptotic iteration method[22,23], and others. 

In this study, will be solved the Dirac equation in case pseudospin symmetry for modified Pöschl-

Teller potential plus trigonometric Scarf II potential using asymptotic iteration method. The basic 

strategy to obtain the solutions is reducing the Dirac equation to the hypergeometric type equation 

with suitable changes of variables. Then the eigenvalue and eigenfunction can be obtained using 

asymptotic iteration method. 

The asymptotic iteration method will be briefly reviewed in Section 2. In Section 3, we review the 

modified Pöschl-Teller potential and Scarf II trigonometric potential, give a brief introduction to the 

Dirac equation for  pseudospin symmetry, and apply the separation of variables in spherical 

coordinates. In Section 4, we solve the radial part and angular part of the Dirac equation with modified 

Pöschl-Teller potential combined with trigonometric Scarf II non-central potential and obtain the 

relativistic energyspectrum and wavefunction via asymptotic iteration method. In Section 5, we 

present graphically some wavefunctions of the Dirac equation, present several relativistic energy 

spectra, and discuss some consequences of the results obtained. Finally, the last section presents a 

brief conclusion. 

 

2. Asymptotic Iteration Method (AIM) 

Asymptotic Iteration Method (AIM) is used to solve second order differential equation in terms: 

 
          0

'

0

''
 xyxsxyxxy nonn 

 
(1) 

where   00 x  and  xso  are coefficients of the differential equation and are well defined functions 

as well as sufficiently differentiable. The one-dimensional Dirac equation can be reduced into 

hypergeometric or confluent hypergeometric type differential equation by suitable changes of 

variables, and then changes it into the differential equation which has the form in equation (1). The 

solution of equation (1) can be obtained by using iteration of 𝜆𝑖 and 𝑠𝑖, 

𝜆𝑖(𝑥) = 𝜆𝑖−1
′ + 𝜆𝑖−1𝜆0 + 𝑠𝑖−1 

𝑠𝑖(𝑥) = 𝑠𝑖−1
′ + 𝑠𝑜𝜆𝑖−1 

 𝑖 = 1,2,3, … (2) 

Eigenvalues can be obtained using equation (3): [24] 

                                             𝜆𝑖(𝑥)𝑠𝑖−1(𝑥) − 𝜆𝑖−1(𝑥)𝑠𝑖(𝑥) = 0 = ∆𝑖, 𝑖 = 1,2,3 ….                          (3) 

On the other hand, equation (1) can be written in term: 

𝑦 ′′(𝑥) = 2 (
𝑡𝑥𝑁+1

1−𝑏𝑥𝑁+2 −
𝑐+1

𝑥
) 𝑦 ′(𝑥) −

𝑊𝑥𝑁

1−𝑏𝑥𝑁+2  (4) 

Equation (4) is AIM-type differential equation  which is solved by using equation (5) [25,26]   

𝑦𝑛(𝑥) = (−1)𝑛𝐶 ′(𝑁 + 2)𝑛
12 F (−𝑛, 𝑝 + 𝑛, 𝜎, 𝑏𝑥𝑁+2 )                               (5)                                       

where, 
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(𝜎)𝑛 =
Γ(𝜎+𝑛)

Γ(𝜎)
 (6) 

 

𝜎 =
2𝑐+𝑁+3

𝑁+2
 (7) 

 

𝑝 =
(2𝑐+1)𝑏+2𝑡

(𝑁+2)𝑏
 (8) 

 

Here 𝐶 ′ is normalization constant and 
12 F  is hypergeometric function. Equation (5) is eigenfunctios of 

AIM-type differential equation in equation(4). Euation (5) is used to obtain wavefunctions of the Dirac 

equation. The relativistic energy equation can be formulated by equating eigenvalue equation by using 

equation (3). 

 

3. The Dirac Equation with Pseudospin Symmetry for Modified P 𝐨̈ schl-Teller Potential 

Combined with Trigonometric Scarf II Non-Central Potential 

The Dirac equation for a single particle with mass 𝑀 in a scalar potential S(r) and vector potential V(r) 

can be given as (ℏ = 1, 𝑐 = 1), 

{𝛼⃗. 𝑝 + 𝛽(𝑀 + 𝑆(𝑟))}𝜓(𝑟) = {𝐸 − 𝑉(𝑟)}𝜓(𝑟)                                    (9)                                

which 𝐸 is relativistic energy of system and 𝑝 is momentum operator (𝑝 = −𝑖∇), while 𝛼⃗ and 𝛽 is 

matrix in term:  

𝛼⃗ = (0 𝜎⃗
𝜎⃗ 0

),                                     (10) 

𝛽 = (
𝐼 0
0 −𝐼

) (11) 

which  𝐼 is identity matrix 2 𝑥 2 and 𝜎⃗ is Pauli matrix, 

𝜎⃗1 = (
0 1
1 0

), 𝜎⃗2 = (
0 −𝑖
𝑖 0

), 𝜎⃗3 = (
1 0
0 −1

) (12) 

 

In the Pauli-Dirac representation, let[25] 

𝜓𝑛𝑘(𝑟) = (
𝑓𝑛𝑘(𝑟)

𝑔𝑛𝑘(𝑟)
)                                                          (13)                            

we have, 

𝜎⃗. 𝑝𝑔𝑛𝑘(𝑟) = [𝐸 − 𝑉(𝑟) − 𝑀 − 𝑆(𝑟)]𝑓𝑛𝑘(𝑟)                                      (14a)                                              

𝜎⃗. 𝑝𝑓𝑛𝑘(𝑟) = [𝐸 − 𝑉(𝑟) + 𝑀 + 𝑆(𝑟)] 𝑔𝑛𝑘(𝑟)                                    (14b)                              

For pseudospin symmetry (𝑆(𝑟) = −𝑉(𝑟))  , equation (14) becomes 

 𝑓𝑛𝑘(𝑟) =
𝜎⃗⃗⃗.𝑝⃗𝑔𝑛𝑘(𝑟)

[𝐸−𝑀]
                                              (15a) 

𝜎⃗. 𝑝𝑓𝑛𝑘(𝑟) = [𝐸 − 2𝑉(𝑟) + 𝑀]𝑔𝑛𝑘(𝑟) (15b)                                              

Substituting equation (15a) into equation (15b) yields 

[𝑝2 + 2(𝐸 − 𝑀)𝑉(𝑟)]𝑓𝑛𝑘(𝑟) = [𝐸2 − 𝑀2]𝑔𝑛𝑘(𝑟)   (16)                                   

In spherical coordinates, modified Pöschl-Teller potential combined with trigonometric Scarf II non-

central potential is defined as 

𝑉(𝑟, 𝜃) =  𝜇2 (
𝑘(𝑘−1)

sinh2 𝜇𝑟
−

𝜂(𝜂+1)

cosh2 𝜇𝑟
) +

1

𝑟2 (
𝑏2+𝑎(𝑎−1)

sin2 𝜃
−

2𝑏(𝑎−
1

2
) cos 𝜃

sin2 𝜃
) (17) 

where 𝜅, 𝜂, 𝑏2 + 𝑎(𝑎 − 1), 𝑏(2𝑎 − 1) are positive real numbers and 𝜇 shows reach of potential. The 

Pöschl-Teller potential is used to explain spectrum vibration and interaction of atomic system.[27] The 

Scarf potential is applied to explain the atomic or moleculer force[28]. Putting equation (17) into 

equation (16) and simplifying the equation, and let 

𝑓𝑛𝑘 =
𝑈(𝑟)

𝑟
Θ(𝜃)𝜙(𝜑)                                                        (18) 
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we have, 

 

[(
r2

U(r)

𝑑2𝑈(𝑟)

𝑑𝑟2 + 
1

Θ(𝜃)

1

𝑠𝑖𝑛𝜃

𝜕

𝜕𝜃
(𝑠𝑖𝑛𝜃

𝜕Θ(𝜃)

𝜕𝜃
) +

1

𝜙(𝜑

1

sin2 𝜃

𝜕2𝜙(𝜑)

𝜕𝜙2 ) + (𝑟2𝜇2 (
𝑘(𝑘−1)

sinh2 𝜇𝑟
−

𝜂(𝜂+1)

cosh2 𝜇𝑟
) + (

𝑏2+𝑎(𝑎−1)

sin2 𝜃
−

2𝑏(𝑎−
1

2
) cos 𝜃

sin2 𝜃
)) (𝐸 − 𝑀)] = −[𝐸2 − 𝑀2]𝑟2                     (19)  

Separating the variables in equation (19), we obtain 

 
r2

U(r)

𝑑2𝑈(𝑟)

𝑑𝑟2 + (𝐸 − 𝑀)𝑟2𝜇2 (
𝑘(𝑘−1)

sinh2μ 𝑟
−

𝜂(𝜂+1)

cosh2 𝜇𝑟
) + [𝐸2 − 𝑀2]𝑟2 − 𝑙(𝑙 + 1) = 0         (20a) 

 

𝑠𝑖𝑛𝜃

Θ(𝜃)

𝜕

𝜕𝜃
(𝑠𝑖𝑛𝜃

𝜕Θ(𝜃)

𝜕𝜃
) + (𝐸 − 𝑀) sin2 𝜃 (

𝑏2+𝑎(𝑎−1)

sin2 𝜃
−

2𝑏(𝑎−
1

2
) cos 𝜃

sin2 𝜃
) +  𝑙(𝑙 + 1) sin2 𝜃 − 𝑚2 = 0   (20b)         

 

−
1

𝜙(𝜑

𝜕2𝜙(𝜑)

𝜕𝜙2 = 𝑚2   (20c) 

Equation (20c) is well known with its solution 

𝜙𝑚 =
1

√2𝜋
𝑒𝑖𝑚𝜑 , 𝑚 = 0, ±1, ±2, …    (21) 

 

4. Analytical solution of Radial and Angular Parts of the Dirac equation 

 

4.1.Solution of the radial part 

The radial part of the Dirac equation in equation (20a) can be solved with approximation, 
1

𝑟2 ≈
𝜇2

sinh2 𝜇𝑟
=

𝜇2

𝑤−1
                                                              (22) 

Substituting equation (22) into equation (20a) and simplifying the equation by substituting variable 

cosh2 𝜇𝑟 = 𝑤, we have: 

𝑤(1 − 𝑤)
𝑑2𝑈(𝑟)

𝑑𝑤2 + (
1

2
− 𝑤)

𝑑𝑈(𝑟)

𝑑𝑤
+ {(𝐸 − 𝑀) (

𝑘(𝑘−1)

4(1−𝑤)
+

𝜂(𝜂+1)

4𝑤
) +

[𝐸2−𝑀2]

4𝜇2 +
𝑙(𝑙+1)

4(1−𝑤)
} 𝑈(𝑟) = 0    (23)                                                                                              

by substituting, 

𝑈(𝑟) = 𝑤𝛿(1 − 𝑤)𝛾𝑝(𝑤)     (24) 

into equation (23), yields 

𝑤(1 − 𝑤)𝑝′′ + 𝑝′ ((2𝛿 +
1

2
) − (2𝛿 + 2𝛾 + 1)𝑤) + 𝑝 (

(𝐸2−𝑀2)

4𝜇2 − (𝛿 + 𝛾)2) = 0  (25) 

where,  

𝛿 =
1

4
−

1

2
√(𝑀 − 𝐸)(𝜂(𝜂 + 1)) +

1

4
         (26)                                                                                              

𝛾 =
1

4
+

1

2
√(𝑀 − 𝐸)(𝑘(𝑘 − 1)) − 𝑙(𝑙 + 1) +

1

4
  (27)                                                                                                                   

Equation (25) can be transform to differential equation type AIM, 

6th Asian Physics Symposium IOP Publishing
Journal of Physics: Conference Series 739 (2016) 012020 doi:10.1088/1742-6596/739/1/012020

4



𝑝′′ + 𝑝′ (
((2𝛿+

1

2
)−(2𝛿+2𝛾+1)𝑤)

𝑤(1−𝑤)
) + 𝑝 (

(
(𝐸2−𝑀2)

4𝜇2 −(𝛿+𝛾)2)

𝑤(1−𝑤)
) = 0                        (28)                      

From equation (28), we have 

𝜆0 =
((2𝛿+2𝛾+1)𝑤−(2𝛿+

1

2
))

𝑤(1−𝑤)
      (29)                         

𝑠0 =
((𝛿+𝛾)2−

(𝐸2−𝑀2)

4𝜇2 )

𝑤(1−𝑤)
 (30)                                                     

To have eigenvalue of equation.(28), further iterations 𝜆𝑖  and 𝑠𝑖 , which i is iteration numbers. By 

using equation (3) and using Matlab 2011 software, energy eigenvalue can be obtained, with 𝜀 =
(𝐸2−𝑀2)

4𝜇2 ,  

∆0      𝜀0 = (𝛿 + 𝛾)2 

  ∆1     𝜀1 = (2𝛿 + 2𝛾 + 1) + (𝛿 + 𝛾)2 = (𝛿 + 𝛾 + 1)2 

∆2      𝜀2 = (4𝛿 + 4𝛾 + 4) + (𝛿 + 𝛾)2 = (𝛿 + 𝛾 + 2)2 

∆3     𝜀3 = (6𝛿 + 6𝛾 + 9) + (𝛿 + 𝛾)2 = (𝛿 + 𝛾 + 3)2 

∆𝑖 … … … … … …. 

Relativistic energy eigenvalue can be obtained by generalized ∆𝑖, which yields 

𝜀 = (𝛿 + 𝛾 + 𝑛𝑟)2 = (−
1

2
√(𝑀 − 𝐸)(𝜂(𝜂 + 1) +

1

4
+

1

2
√(𝑀 − 𝐸)(𝑘(𝑘 − 1) − 𝑙(𝑙 + 1) +

1

4
+ 𝑛𝑟 +

1

2
)

2

     (31)                                         

where 𝑛𝑟 is radial quantum numbers (𝑛𝑟 = 0,1,2 …), 𝑙 is orbital quantum numbers which is obtained 

from angular part solution. And then, radial wavefunction can be obtain by using equations (5-8),we 

have: 

𝑐 =
2𝛿−

3

2

2
, 𝑁 = −1, 𝑡 =

2𝛾+
1

2

2
, 𝑏 = 1, so,   𝜎 =

2𝑐+𝑁+3

𝑁+2
= 2𝛿 +

1

2
 and 𝑝 =

(2𝑐+1)𝑏+2𝑡

(𝑁+2)𝑏
= 2𝛿 + 2𝛾. 

From equation (5), we have, 

𝑝(𝑤) = (−1)𝑛𝑟𝐶2(1)𝑛𝑟 (2𝛿 +
1

2
)

𝑛𝑟
12 F (−𝑛𝑟, 2𝛿 + 2𝛾 + 𝑛𝑟, 2𝛿 +

1

2
, 𝑤)      (32) 

By substituting equation (32) to equation (24), we have radial wavefunction, 

𝑈(𝑤) = 𝑤𝛿(1 − 𝑤)𝛾(−1)𝑛𝑟𝐶(𝑛𝑟)(1)𝑛𝑟
12 F (−𝑛𝑟, 2𝛿 + 2𝛾 + 𝑛𝑟, 2𝛿 +

1

2
, 𝑤)   (33) 

which 𝑤 = cosh2 𝜇𝑟, so 
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𝑈(𝑟) = (cosh2(𝜇𝑟))𝛿(− sinh2(𝜇𝑟))𝛾(−1)𝑛𝑟𝐶(𝑛𝑟)(1)𝑛𝑟 (2𝛿 +
1

2
)

𝑛𝑟
12 F (−𝑛𝑟, 2𝛿 + 2𝛾 +

𝑛𝑟, 2𝛿 +
1

2
, cosh2(𝜇𝑟))                                                                                                                   (34)                

where 𝐶(𝑛𝑟)is radial normalization constant , 2 1F is hypergeometric function  and (2𝛿 +
1

2
)

𝑛𝑟

   is 

Pochamer symbol.   

 

4.2.Solution of the angular part 

For angular part in equation (20b), can be obtain by using AIM to find orbital quantum number. By 

multiplying equation (20b) with 
Θ(𝜃)

𝑠𝑖𝑛 𝜃
, we have 

𝑑

𝑑𝜃
(𝑠𝑖𝑛𝜃

𝑑Θ(𝜃)

𝑑𝜃
) + (𝐸 − 𝑀) 𝑠𝑖𝑛 𝜃 (

𝑏2+𝑎(𝑎−1)

sin2 𝜃
−

2𝑏(𝑎−
1

2
) cos 𝜃

sin2 𝜃
) Θ(𝜃) +  𝑙(𝑙 + 1) sin 𝜃 Θ(𝜃) −

𝑚2 Θ(𝜃)

𝑠𝑖𝑛 𝜃
= 0                                                                                                                               (35) 

Equation (35) must be simplified by using parameter Θ =
H(θ)

√sin θ
  , cos 𝜃 = 1 − 2𝑢 and by simplying it, 

yields, 

𝑢(1 − 𝑢)
𝑑2𝐻(θ)

𝑑𝑢2 + (
1

2
− 𝑢)

𝑑𝐻(θ)

𝑑𝑢
+ {(𝐸 − 𝑀) (

𝑏2+𝑎(𝑎−1)

4𝑢(1−𝑢)
−

2𝑏(𝑎−
1

2
)(1−2𝑢)

4𝑢(1−𝑢)
) +

𝑚2−1/4

4𝑢(1−𝑢)
} H(θ) +

(𝑙(𝑙 + 1) +
1

4
) H(θ) = 0                                                                                                                 (36) 

by using  

𝐻(𝜃) = 𝑢𝛼(1 − 𝑢)𝛽𝑞(𝑢) (37) 

and simplying it, equation (36) can be transform to hypergeometric differential equation: 

 

𝑢(1 − 𝑢)𝑞′′ + 𝑞′ ((2𝛼 +
1

2
) − (2𝛼 + 2𝛽 + 1)𝑢) + 𝑞 ((𝑙 +

1

2
)

2
− (𝛼 + 𝛽)2) = 0 (38) 

where, 

𝛼 =
1

4
+

1

2
√(𝑀 − 𝐸)(((𝑎 −

1

2
) − 𝑏)

2

−
1

4
) − 𝑚2 +

1

2
 (39) 

𝛽 =
1

4
+

1

2
√(𝑀 − 𝐸)(((𝑎 −

1

2
) + 𝑏)

2

−
1

4
) − 𝑚2 +

1

2
 (40) 

𝑚 is magnetic quantum number. 

Equation (38) is hypergeometric differential equation, so we must transform it to AIM type equation 

by divide equation (38) with 𝑢(1 − 𝑢), yields 

𝑞′′ + 𝑞′
((2𝛼+

1

2
)−(2𝛼+2𝛽+1)𝑢)

𝑢(1−𝑢)
+ 𝑞

((𝑙+
1

2
)

2
−(𝛼+𝛽)2)

𝑢(1−𝑢)
= 0 (41)                      

 

From equation (41), we have 

𝜆0 =
((2𝛼+2𝛽+1)𝑢)−(2𝛼+

1

2
)

𝑢(1−𝑢)
 (42) 

𝑠0 =
((𝛼+𝛽)2−(𝑙+

1

2
)

2
)

𝑢(1−𝑢)
 (43) 

To have eigenvalue of this equation, further iterations 𝜆𝑖 and 𝑠𝑖, which i is iteration numbers. By using 

equation (3) and Matlab software, eigenvalue can be obtained,  

∆0=𝑠0𝜆1 − 𝑠1𝜆0 = 0, yield (𝛼 + 𝛽)2 = (𝑙 +
1

2
)

2
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∆1= 𝑠1𝜆2 − 𝑠2𝜆1 = 0, yield (𝛼 + 𝛽 + 1)2 = (𝑙 +
1

2
)

2
 

∆2= 𝑠2𝜆3 − 𝑠3𝜆2 = 0, yield  (𝛼 + 𝛽 + 2)2 = (𝑙 +
1

2
)

2
 

∆𝑖 … … … … … …. 

Eigenvalue can be obtained by generalized ∆𝑖, which yields 

𝑙 = (𝛼 + 𝛽 + 𝑛𝑙 −
1

2
) (44) 

Where 𝑙 is orbital quantum number and 𝑛𝑙 is angular quantum number. 

And then, angular wavefunction can be obtained by using equations (5-8), we have, 

𝑐 =
2𝛼−

3

2

2
, 𝑁 = −1, 𝑡 =

2𝛽+
1

2

2
, 𝑏 = 1,  so, 𝜎 =

2𝑐+𝑁+3

𝑁+2
= 2𝛼 +

1

2
, 𝑝 =

(2𝑐+1)𝑏+2𝑡

(𝑁+2)𝑏
= 2𝛼 + 2𝛽 

From equation (5), we have 

𝑞(𝑢) = (−1)𝑛𝑙𝐶2(1)𝑛𝑙 (2𝛼 +
1

2
)

𝑛𝑙
12 F (−𝑛𝑙, 2𝛼 + 2𝛽 + 𝑛𝑙 , 2𝛼 +

1

2
, 𝑢) (45) 

By substituting equation (45) into equation (37), yields 

𝐻(𝑢) = 𝑢𝛼(1 − 𝑢)𝛽(−1)𝑛𝑙𝐶2(1)𝑛𝑙
12 F (−𝑛𝑙 , 2𝛼 + 2𝛽 + 𝑛𝑙 , 2𝛼 +

1

2
, 𝑢) 

which 𝑢 = −
1

2
 (cos 𝜃 − 1), so the angular part wavefunction can be obtained, as follows 

𝐻(𝜃) = (
1

2
−

1

2
cos 𝜃) 𝛼 (

1

2
+

1

2
cos 𝜃 )

𝛽
(−1)𝑛𝑙𝐶𝑛𝑙

(1)𝑛𝑙 (2𝛼 +
1

2
)

𝑛𝑙
12 F (−𝑛𝑙 , 2𝛼 + 2𝛽 + 𝑛𝑙 , 2𝛼 +

1

2
, (

1

2
−

1

2
cos 𝜃) )                                                                                                                                       (46) 

 

𝐶𝑛𝑙
is angular normalization constant. 

 

5. Result And Discussion 

In this section, we discuss several results which were obtained in the previous section. From 

relativistic energy equation in Eq.(31) and orbital quantum number equation in Eq.(44), and by using 

Matlab software we have numeric solution of relativistic energy are listed in Table 1 with parameters  

𝜅 = 2, 𝜂 = 1.5, 𝑎 = 0.35, 𝑏 = 0.65 and 𝑀 = 5 𝑓𝑚−1, the negative value of relativistic energy is taken due 

to the pseudospin symmetric limit[19]. By inspecting Table 1, show that increase of value 𝜇 and 𝑛𝑟 in 

the same quantum state causes decrease energy eigenvalue.The parameter μ has a dimension inverse of 

distance in space that describes the reach of Pöschl-Teller potential. If μ is enlarged, physically means 

that the potential range is smaller in a space, it causes decrease energy. 

 
Table 1. Relativistic energy corresponding to several sates of a particle 

under the influence of modified Pöschl-Teller potential and trigonometric 

Scarf II potential. 

 

𝑛𝑟 𝑛𝑙 𝑚 
𝐸𝑛𝑟𝑛𝑙𝑚

(𝑓𝑚−1) 

𝜇 = 0,3𝑓𝑚−1 𝜇 = 0,6𝑓𝑚−1 𝜇 = 0,9𝑓𝑚−1 

1 0 0 -5.0084 -5.0332 -5.0739 

1 1 0 -5.0010 -5.0039 -5.0088 

1 2 0 -5.0065 -5.0257 -5.0575 

2 0 0 -5.0781 -5.3020 -5.6450 

2 1 0 -5.0486 -5.1902 -5.4142 

2 2 0 -5.0119 -5.0477 -5.1073 
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By varying parameter which corresponding value 𝛿 and 𝛾 , some of the radial wavefunctions are 

listed in Table 2. Radial wavefunctions for particle under the influence of modified Pöschl-Teller 

potential and Scarf II potential are affected by potential constants 𝜂, a, b and by 𝜇.The parameter μ has 

a dimension inverse of distance in space that describes the reach of Pöschl-Teller potential.If μ is 

enlarged, physically means that the potential reach is smaller in a space. By inspecting Table 2 due to 

the increase in the value of μ causes particles move further away from the nucleus and show that 

change in radial wavefunctions are affected of potential constants 𝜅 , 𝜂, a and b. 

 
Table 2. Radial wavefunctions with 𝑛𝑙 = 2,𝑚 = 0,𝑀 = 5 for particle under the influence of modified Pöschl-

Teller potential and trigonometric Scarf II potential variation 𝜅, 𝜂, a and b. 

 

𝒏𝒓 𝝁(𝒇𝒎−𝟏) 𝜿 𝜼 𝒂 𝒃 𝑬 𝒍 𝑼(𝒓)𝑪𝒏𝒓 

1 

 

0.9 

 

2 

 

1.5 

 

 

0.35 

 

 

0.65 

 

-5.0575 3.4050 

 

5.1616(cosh2 𝜇𝑟)−2.8308(− sinh2 𝜇𝑟)1.4082(1 −
0.36 cosh2 𝜇𝑟)  

2 

 

0.9 

 

2 

 

1.5 

 

 

0.35 

 

 

0.65 

 

-5.1073 3.4073 

 

     21.62(cosh2 𝜇𝑟)−2.8384(− sinh2 𝜇𝑟)  1.4170(1 −
     0.33 cosh2 𝜇𝑟 − 0.00613(cosh2 𝜇𝑟)2)  

3 

 

0.9 

 

2 

 

1.5 

 

 

0.35 

 

 

0.65 

 

-5.7618 3.4372 

 

 

79.21(cosh2 𝜇𝑟)−2.9361(− sinh2 𝜇𝑟)  1.5269(1 +
0.101 cosh2 𝜇𝑟 + 0.027(cosh2 𝜇𝑟)2 +

0.00591(cosh2 𝜇𝑟)3)   

 

2 

 

0.3 2 1.5 0.35 

 

0.65 

 

-5.0119 3.4029 

 

21.35(cosh2 𝜇𝑟)−2.8239(− sinh2 𝜇𝑟)1.4001(1 −
0.329 cosh2 𝜇𝑟 − 0.00605(cosh2 𝜇𝑟)2)  

2 0.6 2 1.5 0.35 

 

0.65 

 

-5.0477 3.4046 

 

21.4526(cosh2 𝜇𝑟)−2.8293(− sinh2 𝜇𝑟)1.465(1-

0.3278cosh2 𝜇𝑟-0.0061(cosh2 𝜇𝑟)2)  

1 0.9 2.5 2 0.35 0.65 -5 3.4024 

 

6.762(cosh2 𝜇𝑟)−3.6310(− sinh2 𝜇𝑟)2.6360(1 −
0.146 cosh2 𝜇𝑟)   

1 0.9 3 2.5 0.35 0.65 -5.0105 3.4029 

 

8.3724(cosh2 𝜇𝑟)−4.4362(− sinh2 𝜇𝑟)3.6164(1 −
0.0764 cosh2 𝜇𝑟)  

1 0.9 2 1.5 0.25 0.75 -5.2033 3.7811 

 

5.2058(cosh2 𝜇𝑟)−2.8529(− sinh2 𝜇𝑟)1.0528(1 −
0.50 cosh2 𝜇𝑟)  

1 0.9 2 1.5 0.5 0.5 -5.0002 2.7071 

 

5.1442(cosh2 𝜇𝑟)−2.8221(− sinh2 𝜇𝑟)1.8480(1 −
0.18 cosh2 𝜇𝑟)  
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For the angular solution of the wavefunction in Eq.(46), we compare spinor wavefunctions for 

variation 𝑛𝑙.  From Eq.(46) with 𝑛𝑟 = 2, 𝑚 = 0, 𝜇 = 0.9 𝑓𝑚−1, 𝑎 = 0.25, 𝑏 = 0.75, 𝑘 = 2, 𝜂 = 1.5, we have 

angular wave function 𝐻(𝜃) is shown in figure 1a for 𝑛𝑙 = 0,  figure 1b for 𝑛𝑙 = 1 and figure 1c for 

𝑛𝑙 = 2. By inspecting figure 1, the variation of 𝑛𝑙 , influences the shape of the orbital probability 

distribution in space.  In figure 1 indicates that the increase 𝑛𝑙 cause to rise in  wave that are formed. 

 

 

 

 

 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

 

 

 

(b) 

 

 

 

 

 

 

 

 

 

 

(c) 

 

 

Figure 1. Two-dimensional and three dimensional angular wavefunctions with 

variations nl (a) 𝑛𝑙 = 0, (b) 𝑛𝑙 = 1,(c) 𝑛𝑙 = 2. 
 

6. Conclusion 

In this paper, we study the Dirac equation for particle spin-1/2 in the modified Pöschl–Teller potential 

combined with the trigonometric Scarf II non-central potential under the condition pseudospin 

symmetry. The radial part of the wavefunction is obtained approximately from Eq.(34) and the angular 

part in Eq.(46). The results show that the disturbance of modified P ö schl-Teller Potential and 

trigonometric Scarf II potential change in the wave function of the radial part and the angular part. 

Relativistic energy equatione can be obtained via AIM in Eq.(31) and equation of orbital quantum 

number l in Eq.(44), where both are interrelated between quantum numbers. Relativistic energy also is 
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solved numerically using Matlab software, where the increase in the radial quantum number nr causes 

a decrease in the energy spectrum. The negative value of energy is taken due to the pseudospin 

symmetry limit. 
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