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Abstract. We search for Asymptotically AdS solutions of the background metric in which
dilaton back reacts to gravity in five-dimensional gravity-dilaton theory. The five-dimensional
gravity-dilaton theory generally appears in the context of the low energy effective action of closed
string theory in the Einstein frame. In particular, we consider dilaton which are minimally
coupled to gravity in which the potential for dilation is taken to be simple and contain only
one exponential term parametrized by a constant a. We solve analytically and show for a
simple constant dilaton potential it appears there are no black hole solutions if we turn on
the dilaton contribution. On the other hand, the exponential dilaton potential has black hole
solutions but they are not in general Asymptotically AdS. We argue that there are some possible
Asymptotically AdS black hole solutions in the range of |a| < 4√

6
.

1. Introduction
It is believed that QGP(Quark Gluon Plasma) produced in RHIC(Relativistic Heavy Ion
Collision) at Brookhaven and also the current running experiments in LHC(Large Hadron
Collider) are in the region where quarks and gluons loose their identity but still they interact
strongly each other. In this region, we can not trust perturbative calculation and one start
looking at non-perturbative method such as lattice QCD to compute some properties in QGP.
The more elegant way to solve this problem is using AdS/QCD correspondence where we can
do a perturbative calculation in string theory to get some correlation function of QGP in strong
coupling [7, 8].

AdS/QCD model has been one of many models in an attempt to describe QCD as low effective
theory of string theory [1, 2, 5, 11, 12]. The correspondence between field theory, in particular
QCD, and string theory under Anti-de Sitter background is not trivial and it comes as a relation
of the coupling constants [6]. For years, people have known that there is a correspondence
between strongly couple gauge theory and weakly coupled string theory while the vice versa is
still not clear.

The dilaton has been one of important ingredients in attempts of building the AdS/QCD
model [4, 10]. In this article, we would like to consider the effective five-dimensional gravity-
dilaton theory, with negative cosmological constant, descended from the string theory. Our main
focus is the dilaton potential that would take an exponential form parametrized by a constant
a. At first, we will discuss the solutions in which the dilaton potential is a constant which
contributes as cosmological constant term. Unfortunately, this potential does not have a black
hole solution that would corresponds to the finite temperature field theory as shown by QGP
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produced at RHIC and LHC [9]. Then, we generalize the dilaton potential to an exponential
form that still inherits the cosmological constant term of the previous case. We will show that
there exist some black hole solutions in this case.

2. From String to Einstein Frame
Consider the following action in the string frame1

S ∼
∫

dDx
√
−ge−2Φ

[
R+ 4(∂Φ)2 − 1

4
F 2
µν

]
+ · · ·. (1)

We can go from the string frame to the Einstein frame using a Weyl transformation

gEµν = e−
4

D−2
Φgµν , such that, in the Einstein frame, the action (1) becomes

SE =

∫
dDx

√
−gE

(
RE − 4

D − 2
(∂Φ)2 − 1

4
e−

4
D−2

ΦF 2
µν

)
+ · · ·. (2)

Assume that we can find all classical solution of the fields except for gravity and dilaton. Plugging
back those solutions into the action, we can write the effective action in terms of gravity and
dilaton as2

SE =

∫
dDx

√
−gE

(
RE − 1

2
(∂Φ)2 + V (Φ)

)
. (3)

In our case, we will just consider the potential which gives asymptotic AdS solution to the
metric. Therefore we take the potential to be of the form V = 12

b2
+O(Φ), where b is meant to

be the AdS radius.

3. BPS-like Forms
The method that we are going to use here is based on the one used by Miller et al [3]. It is
basically using BPS-like equations which are in first order differential equations to solve equations
of motion which normally take the form of second order differential equations. Despite the fact
that BPS-like equations are simpler to solve, it is not an easy job to get the BPS-like form from
the action. One has to able to write all terms in the action as a sum of squares plus a total
derivative then one can trust their BPS-like solutions to satisfy the equations of motion.

Now, we are going to show how do these BPS-like forms satisfy the equations of motion. Lets,
consider a theory in D-dimensions with N fields ϕi and assume that we can write its action into
BPS-like forms plus a total derivative terms,

S =

∫
dxD

N∑
i=1

Ai[ϕ⃗, ∂⃗ϕ]
2 +

∫
dxD−1B[ϕ⃗, ∂⃗ϕ], (4)

where Ai are the BPS-like forms, B is the total derivative terms, and ϕ⃗ ≡ (ϕ1, . . . , ϕN ).
Neglecting the boundary terms, we can find the equations of motions by taking a variation
of the action above to zero,

δS =

∫
dxD

N∑
i=1

2Ai[ϕ⃗, ∂⃗ϕ]δAi[ϕ⃗, ∂⃗ϕ] = 0. (5)

Here, we can see the simplest solution of these BPS-like forms that satisfy the equations of
motion is when A⃗[ϕ⃗, ∂⃗ϕ] = 0 and these are our BPS-like equations that we are going to use in
many of our calculations.

1 Here, we only consider fields (gravity, dilaton, and U(1) gauge field) that are needed in our calculation.
2 We have scaled the dilaton Φ →

√
D−2
8

Φ and assumed that the potential term is just a function of dilaton.
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4. Constant Dilaton Potential
As a first attempt, we take the dilaton potential to be a constant in order to make sure that
near the boundary (infinity) the resulting metric is Asymptotically AdS. Let us consider the
action that is given by the effective five-dimensional action of gravity-dilaton, with cosmological
constant term,

S =

∫
d5x

√
−g

(
R− 1

2
gµν∂µΦ∂νΦ+

12

b2

)
. (6)

We write the following general ansatz for the metric and dilaton in Poincare patch coordinates
of AdS that preserve less symmetry(three-dimensional rotation) than four-dimensional Lorentz
invariance,

ds2 = e2n4

[
−dt2 + e2(n3−(3/2)n4)

(
dx23 + e2n1du2

)]
Φ = Φ(u), (7)

with u is the fifth dimension. Substituting these ansatz back to the action (6), we obtain an
effective (1 + 1)-dimensional action, after factoring out an overall three-dimensional volume,

Seff =

∫
dt Leff , (8)

with the effective Lagrangian is then given by

Leff =

∫
du e2n3−n1

[
6(n′

3)
2 − (3/2)(n′

4)
2 +

12

b2
e2n1+2n3−n4 − 1

2
(Φ′)2

]
+

∫
du

d

du

(
e2n3−n1(n′

4 − 6n′
3)
)
.

(9)
Note that there is no n′

1-quadratic terms in the Lagrangian, so we can eliminate it by a field
redefinition, or equivalently taking a coordinate transformation of u. In order to remove the
overall exponential factor in the first integral of the right hand side effective action (9), we choose
n1 = 2n3. It turns out to be much better if we would rather substitute n3 =

1
2n1 and get a nicer

Lagrangian,

Leff =

∫
du

[
3

2
(n′

1)
2 − 3

2
(n′

4)
2 +

12

b2
e3n1−n4 − 1

2
(Φ′)2

]
+ boundary. (10)

Here the degree of freedom is n1 instead of n3. From now on, we will neglect the boundary
terms.

4.1. Non-Black Hole Solutions
For non-black hole solutions, we make an identification n1 = 3n4 to preserve four-dimensional
Lorentz invariance and so the metric becomes

ds2 = e2n4(−dt2 + dx23) + e8n4du2. (11)

It is clear that this metric, parametrized by one field n4, does not have characteristic of black
hole solutions.

4.1.1. Trivial Dilaton Solution For trivial dilaton solution, we may write the effective
Lagrangian in BPS-like forms as follows

Leff =

∫
du

[
12

(
n′
4 +

1

b
e4n4

)2

− 1

2

(
Φ′)2] , (12)
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with BPS-like equations are given by

n′
4 = −1

b
e4n4 , Φ′ = 0, (13)

where the solution for dilaton is just a constant. In order to get an AdS solution, we make

another identification such that e2n4 = b2

r2
and the first BPS-like equation of (13) becomes

dr

du
= − 1

b n′
4

e4n4 =
b3

r3
. (14)

So, the solution for the metric is just the usual AdS metric

ds2 =
b2

r2

(
−dt2 + dx23 + dr2

)
. (15)

4.1.2. Non-trivial Dilaton Solution The non-trivial dilaton solution can be obtained by setting
the solution of dilaton as a linear function of u. This is true because from the effective Lagrangian
(10) we can derive the equation of motion of dilaton that is a linear function of coordinate u
such that the first derivative of dilaton is a constant C, Φ′ = C. To get the BPS-like forms,
we can not just substitute this constant into the effective Lagrangian3 since this will not satisfy
the original second order differential equations of motion. What we should do is writing the
effective Lagrangian in BPS-like forms while keeping one of its BPS-equations to be the same
as the equation of motion of dilaton. The satisfying effective Lagrangian is given by

Leff =

∫
du

12
n′

4 +

√
1

b2
e8n4 +

C2

24

2

− 1

2

(
Φ′ − C

)2 − 24n′
4

√
1

b2
e8n4 +

C2

24

 . (16)

Here we assume the last term in the first integral can be written as an additional contribution
to the total derivative term4. The BPS-like equations are given by

n′
4 = −

√
1

b2
e8n4 +

C2

24
, Φ′ = C. (17)

Now, we choose an identification such that the metric becomes asymptoticaly AdS and the
choice is e4n4du = b

rdr. The first BPS-like equation of (17) has solution

e2n4 = ± e2
√
6c1

2
√
6r2

√
1− 6C2b2e−8

√
6c1r8, (18)

where c1 is an integration constant. The fact that we have two solutions of the first order
differential equation might be a reminiscence of second order differential equation of motion.
The explicit form of u in term of r is

u =

√
6

C
arctanh

(
Cb

√
6e4

√
6c1r4

)
+ constant. (19)

3 One may think that there is no difference by doing so but actually it will give at least a different sign in the
Lagrangian.
4 In more detail, one can confirm with a paper by Miller et al [3] in the section where they discuss about
nonextremal BPS solutions.
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We can set c1 such that b2 = 1
2
√
6
e2

√
6c1 and so the solution for metric and dilaton in terms of r

are

ds2 =
b2

r2

√1− C2

96b6
r8(−dt2 + dx23) + dr2

 , Φ(r) =

√
3

2
ln

1 + C
4
√
6b3

r4

1− C
4
√
6b3

r4

+ ϕ0. (20)

By defining r4c = 4
√
6b3

C , we are celebrating the Csaki-Recee solution [4]. In this solution, we
can see clearly how dilaton changes the metric solution and indeed if we turn-off the dilaton by
setting C = 0, we get back the usual AdS solution.

4.2. Black Hole Solutions
For black hole solutions, we need to use some general form of a asymptotic AdS black hole
solution as the following [5]

ds2 =
b2

r2
f(r)

(
−g(r)dt2 + dx23 +

1

g(r)
dr2
)
, (21)

with f(r) and g(r) are regular function and f(0) = g(0) = 1 and also g(r) is zero at some finite
r > 0. So, the metric ansatz (7) can be rewritten to mimic the general black hole from as below

ds2 = en1−n4

(
−e3n4−n1dt2 + dx23 + e2n1du2

)
. (22)

Here we can identify en1−n4 = b2

r2
f(r) and e2n1du2 = en1−3n4dr2, with e3n4−n1 = g(r).

4.2.1. Trivial Dilaton Solution The effective Lagrangian (10) can be written in the BPS-like
forms

Leff =

∫
du

[
3

2

(
n′
1 − en1+n4 − 2

b2
e2(n1−n4)

)2

− 3

2

(
n′
4 + en1+n4 − 2

b2
e2(n1−n4)

)2

− 3

2
(Φ′)2

]
.

(23)

The BPS-like equations are

(n′
1 + n′

4) =
4

b2
e2(n1−n4), (n′

1 − n′
4) = 2en1+n4 , Φ′ = 0. (24)

Define p = n1 + n4 and q = n1 − n4, so that the first two BPS-like equations of (24) are now

p′ =
4

b2
e2q, q′ = 2ep. (25)

The first BPS-like equation of (24) can be solved as

ep =
1

b2
e2q + C, (26)

with C is an integration constant. Now, let us identify eq = b2

r2
so that the metric can be written

in terms of functions p and q as follows

ds2 = −ep−qdt2 + eqdx23 + e2q+pdu2 = −
(
1

r2
+

C

b2
r2
)
dt2 +

b2

r2
dx23 +

b4

r4

(
b2

r4
+ C

)
du2. (27)
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Using du
dr = 1

b2

r4
+C

(
−1

r

)
, the metric becomes

ds2 =
b2

r2

−(1 + C

b2
r4
)

1

b2
dt2 + dx23 +

1(
1 + C

b2
r4
)dr2

 . (28)

This metric has a horizon at r4h = − b2

C , with C < 0 and this is the usual AdS-Schwarzschild(black
hole) solution after rescaling the time coordinate.

4.2.2. Non-trivial dilaton solution We can get another solution by redefining 8p = 3n1 − n4

and 8q = n1 − 3n4 and writing the Lagrangian (10), in BPS-like form, as the following

Leff =

∫
du

12
p′ −

√
1

b2
e8p +

C2

24

2

− 12

(
q′ − B

2
√
6

)2

− 1

2
(Φ′ −A)2

+24p′

√
1

b2
e8p +

C2

24
− 2

√
6q′B − Φ′A

 , (29)

where A,B and C are real constant and they are constrained by C2 = A2 + B2. The BPS-like
equations are given by

p′ =

√
1

b2
e8p +

C2

24
, q′ =

B

2
√
6
, Φ′ = A. (30)

The metric can be written in terms of p and q,

ds2 = −e2p−6qdt2 + e2p+2qdx23 + e8pdu2. (31)

Now, we have to find an identification that gives us asymptotic AdS metric with an event horizon.
The easiest way to do it is by identifying e8p = f(r). So from the first BPS-like equation of (30),
we obtain

dr

du
=

8f(r)

f ′(r)

√
f(r)

b2
+

C2

24
. (32)

As a simple case take f(r) = b8

r8
which give solutions

ds2 =
b2

r2


√C2r8

24b6
+

√
1 +

C2r8

24b6

− B
2C

−
√C2r8

24b6
+

√
1 +

C2r8

24b6

 2B
C

dt2 + dx23

+
dr2(

1 + C2

24b6
r8
)
 ,

Φ(r) = −A

C

√
3

2
ln

√C2r8

24b6
+

√
1 +

C2r8

24b6

+ ϕ0. (33)

Here we have fixed all constants to give us asymptotic AdS solution (15) near r → 0.
Curvature scalar in terms of u coordinate, using the BPS-like equations, is given by

R = e−8p

[
12

(
1

b2
e8p +

C2

24

)
− 12

(
B2

24

)
− 8

(
4

b2
e8p
)]

(34)
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and in terms of r coordinate it becomes

R =
A2

2f(r)
− 20

b2
. (35)

Here, we can see that naked singularity happens when f(r) = 0, or in our example is at r → ∞,

and so at r8 = −24b6

C2 we have a horizon, with C2 < 0 if we define 0 ≤ r < ∞. If we turn off the

dilaton contribution, A = 0, we will get back the negative curvature scalar of AdS metric5. We
can also see that the first term in the curvature scalar is coming from the matter contribution
and in this case is the dilaton. This solution in some sence is not a good one because it gives us
imaginary number in C if we expect the horizon to be at some finite positive number of r.

The difficulty of finding a correct solutions for metric and dilaton in terms of real functions
could arise as the fact that in the corresponding non-black hole solution we obtain a naked
singularity at some finite r. In general, we will show that in the black hole solutions even
though there is a singularity at some finite r, this singularity turns out to be a naked singularity
instead of a horizon. The ansatz for a black hole (31) can be written as

ds2 = e2(p+q)
(
−e−8qdt2 + dx23 + e6p−2qdu2

)
. (36)

From general form of asymptotic AdS black hole (21), if there is a horizon at some finite r = rH
then we would expect that e−8q(rH) = 0 or u = ±∞, from the second BPS-like solution(30).
The first BPS-like equation (30) will give us

e−8p =
12

C2b2
cosh

(
4√
6
Cu+ Cbc1

)
− 12

C2b2
(37)

and this function is infinite at u = ±∞. So, as we can see from (34) at r = rH , the curvature
scalar will blow up and we can conclude that this singularity is a naked singularity. A more
detail study on the non-existence of black hole solutions in this theory can be read in [13].

5. Exponential Dilaton Potential
In general, we can add more dilaton potential terms into the action (6). Dilaton potential
usually comes in terms of exponential form. Here, we are going to consider the action with one
exponential form,

S =

∫
d5x

√
−g

(
R− 1

2
gµν∂µΦ∂νΦ+

12

b2
eaΦ

)
, (38)

where a is a constant real number.

5.1. Non-Black Hole Solutions
Using the non-black hole ansatz (11), the effective Lagrangian becomes

Leff =

∫
du

[
12(n′

4)
2 +

12

b2
e8n4+aΦ − 1

2
(Φ′)2

]
. (39)

Furthermore, we can rewrite our fields in a more simple Lagrangian by defining l = 8n4 + aΦ
and m = m1n4 + m2Φ. The constants m1 and m2 can be determined by requiring that the
Lagrangian should not contain any mixing term of fields l and m, a = m1

3m2
, and there should be

inversion operation to the fields n4 and Φ, a ̸= 8m2
m1

. Both these requirements give a restriction

5 For Einstein-Hilbert action in AdS, we have S =
∫ √

−g (R− 2Λ) such that the field equation is given by
Rµν − 1

2
gµνR+ Λgµν = 0. In our case, we have Λ = − 6

b2
so that the curvature scalar R = − 20

b2
.

6th Asian Physics Symposium IOP Publishing
Journal of Physics: Conference Series 739 (2016) 012013 doi:10.1088/1742-6596/739/1/012013

7



to dilaton potential such that a ̸= ± 4√
6
. Substituting those fields into the action, we obtain a

simple action in BPS-like form

Leff =

∫
du

 3

2(8− 3a2)

l′ −
√

8(8− 3a2)

b2
el + C2

2

− 4

m2
2(8− 3a2)

(m′ −
√
6

4
m2C)2

 , (40)

where C is a constant. The BPS-like equations are

l′ =

√
8(8− 3a2)

b2
el + C2, m′ =

√
6

4
m2C, (41)

and the solutions in terms of u coordinate are given by

l(u) = ln

(
− C2b2

8(8− 3a2)
sech

(
1

2
C(u+ bc1)

)2
)
, m(u) =

√
6

4
m2Cu+ c2, (42)

where c1 and c2 are constant. So, the solution of the original fields (dilaton and metric) is given
by

n4(u) =
1

8− 3a2

(
l(u)− a

m2
m(u)

)
, Φ(u) =

1

8− 3a2

(
8

m2
m(u)− 3al(u)

)
. (43)

One can check that this solution has no naked singularity in the curvature scalar with restriction
a > 4√

6
and C > 0 or a < − 4√

6
and C < 0. This is because the solution has a nice finite secant

hyperbolic function, in coordinate u, unlike sinus hyperbolic function of previous Csaki-Reece
solution. This could also be a sign the existence of black hole solutions.

5.2. Black Hole Solutions
Defining 8p = 3n1 − n4 and 8q = n1 − 3n4 and using the black hole ansatz (21) and (22), we
can rewrite the effective Lagrangian to be

Leff =

∫
du

[
12
(
(p′)2 − (q′)2

)
+

12

b2
e8p+aΦ − 1

2
(Φ′)2

]
. (44)

Using another fields definition, l = 8p + aΦ and m = m1p + m2Φ, the effective Lagrangian
written in BPS-like form now becomes

Leff =

∫
du

 3

2(8− 3a2)

l′ −
√

8(8− 3a2)

b2
el + C2

2

−
4
(
m′ −

√
6
4 m2B

)2
m2

2(8− 3a2)
− 12

(
q′ −A

)2 ,
(45)

where A,B, and C are real constant and they are constrained by C2 −B2 = 8(8− 3a2)A2. The
BPS-like equations are

l′ =

√
8(8− 3a2)

b2
el + C2, m′ =

√
6

4
m2B, q′ = A. (46)

The solution to (46) in terms of u coordinate is given by

l(u) = ln

(
− C2b2

8(8− 3a2)
sech

(
1

2
C(u+ bc1)

)2
)
, m(u) =

√
6

4
m2Bu+c2 q(u) = Au+c3,

(47)
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where c1, c2, and c3 are constant. So the solution of the original fields (dilaton and metric) is
given by

p(u) =
1

8− 3a2

(
l(u)− a

m2
m(u)

)
, Φ(u) =

1

8− 3a2

(
8

m2
m(u)− 3al(u)

)
, q(u) = Au+c3.

(48)
Let us compute the area of horizon, which can be read off from the metric,

e2p+2q =

4C2b2e
−bCc1− a

m2
c2−(3a2−8)c3

8(3a2 − 8)

− 2
3a2−8 (

1 + e−C(u+bc1)
) 4

3a2−8 e
4(3a2−8)A+4C+a

√
6B

2(3a2−8)
u
.

(49)

In order to get a finite horizon area, at u = ∞, we impose the last exponential term equal to

one by setting B = −a
√
6

4 C and C = 8A, with C, a > 0. Unfortunately, we will show later on,
this solution does not give an AdS metric at u = 0 unless a = 0. For the moment, we would
expect that the area is infinity at u = 0 where in this case we fix the constant e−Cbc1 = −1 and
a2 < 8

3 hence the horizon area becomes

e2p+2q =

4C2b2e
− a

m2
c2+(8−3a2)c3

8(8− 3a2)

 2
8−3a2 (

1− e−Cu
)− 4

8−3a2 =
b2

r2
f(r), (50)

where f(r) is a regular function at the horizon and equal to one at r = 0. So the entropy density
and temperature for this solution are given by

s = lim
u→∞

2π

κ25
e3p+3q =

2π

κ25

4C2b2e
− a

m2
c2+(8−3a2)c3

8(8− 3a2)

 3
8−3a2

, (51)

T = lim
u→∞

e(p+q)−(3p−5q)
∣∣∣(e−8q

)′∣∣∣
4π

=
|−8q′|
4π

e−2(p+q) =
8A

4π

4C2b2e
− a

m2
c2+(8−3a2)c3

8(8− 3a2)

− 2
8−3a2

,(52)

where A > 0.
Now, let compute curvature scalar for this solution. We can write p in terms of q, with c3 = 0

for simplification,

e2p =

(
4C2b2e

− a
m2

c2

8(8− 3a2)

) 2
8−3a2 (

1− e−8q
)− 4

8−3a2 e−2q (53)

and its derivatives

p′ =

(
−q′ − 16e−8q

(8− 3a2) (1− e−8q)
q′
)
, p′′ =

27e−8q

(8− 3a2) (1− e−8q)2
(q′)2. (54)

From formula (34), we can write curvature scalar,

R = e−8p
[
12(p′)2 − 12(q′)2 − 8p′′

]
, R(u → ∞) =

(
4C2b2e

− a
m2

c2

8(8− 3a2)

)− 8
8−3a2 −5C2

2(8− 3a2)
,

(55)
while at u = 0 one can show the curvature scalar vanishes for a ̸= 0 means that the solution
is a black hole but not asymptotically AdS. If a = 0, the curvature scalar will be finite both
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at u = 0 and at u → ∞ which gives us back AdS-Schwarzchild. To find the exact form of this
black hole, we need to use identification (50) such that we can write u in terms of r,

u = − 1

C
ln

1− ( r2

b2f

) 8−3a2

4
(
4C2b2e

− a
m2

c2

8(8− 3a2)

)1/2
 . (56)

The metric is given by

ds2 =
b2

r2
f

−
1− ( r2

b2f

) 8−3a2

4
(
4C2b2e

− a
m2

c2

8(8− 3a2)

)1/2
 dt2 + dx23

+
(8− 3a2) (2f − rf ′)2 f

3a2−6
2

32

[
1−

(
r2

b2f

) 8−3a2

4

(
4C2b2e

− a
m2

c2

8(8−3a2)

)1/2
] ( b

r

)3a2

e
− a

m2
c2dr2


(57)

and solution for dilaton is

Φ(r) =
1

8− 3a2

−(2
√
6B

C
+ 3a

)
ln

1− ( r2

b2f

) 8−3a2

4
(
4C2b2e

− a
m2

c2

8(8− 3a2)

)1/2
+

(8− 3a2)

m2
c2

−3a

2
(8− 3a2) ln

(
b2f

r2

))
+ ϕ0.

(58)

We can also see clearly from dilaton profile that dilaton is infinity near r = 0 which is not
expected for asymptotically AdS solution unless a = 0. Recall that the calculation is done for
c3 = 0. If c3 ̸= 0 the curvature scalar will not be zero and, so there might be AdS black hole
solutions with some appropriate fixed remaining constants.

6. Conclusion
We have shown how to construct BPS-like equations for five dimensional gravity-dilaton system
in which the dilaton potential is an exponential function parametrized by a constant a. For
non-black hole solutions, we obtained the range value of a is |a| > 4/

√
6. It turned out that

there are possible black hole solutions for a in the range |a| < 4/
√
6. This in accordance with

the black hole solution of the constant dilaton potential, namely AdS-Schwarzschild black hole,
in which a = 0. We argue there might be some AdS black hole solutions if one of the constants
in the solutions is non-zero, or to be precise c3 ̸= 0.
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