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Abstract. An n dimensional flat manifold NV is embedded into an n+1 dimensional stationary
manifold M. The metric of M is derived from a general form of stationary manifold. By taking
several assumption, such as 1) the ambient manifold M to be maximally symmetric space and
satisfying a pure gauge condition, and 2) the submanifold is taken to be flat, then we find
the solution that satisfies Ricci scalar of N. Moreover, we determine whether the solution is
compatible with the Ricci and Riemann tensor of manifold N depending on the dimension n.

1. Introduction

Spacetime geometry has played an important part in theoretical physics since the advent of
Einstein’s relativity. Especially, in general relativity, gravitational interaction is described as a
curved spacetime which is the part of Riemannian differential geometry. Besides, it is still unclear
about the exact dimension of our universe, whether it is constructed by only four dimensional
spacetime or more dimensions. Therefore, study of higher dimensional spacetime would be of
interest.

In this paper, we discuss about higher dimensional stationary geometry with some constraints.
The geometry is composed of two manifolds, those are an n dimensional manifold N which is
embedded into the higher one, an n + 1 dimensional manifold M. Manifold N is a Riemannian
manifold which contains only spatial components. In the end, the submanifold N will be taken
to be a flat manifold. On the other hand, the ambient manifold M is either a Riemannian or
Lorentzian manifold, which contains both spatial and time components, and will be limited to
some conditions. We assume that manifold M is a maximally symmetric space and satisfies a
pure gauge like condition. Therefore, we will find the solution which satisfies the assumptions
and what criteria should be fullfilled so that the solution is valid.

In order to find the solution, all the conditions mentioned above will not be implemented
at once, but rather gradually. Firstly, we take a general form metric of stationary manifold,
mentioned in equation (1), as the metric of manifold M. Then, the Riemann tensor of the
manifold is calculated and compared to the Riemann tensor of manifold M if it is a maximally
symmetric space. By applying a pure gauge like condition, the equation of the Riemann tensors
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of stationary and maximally symmetric manifold M are simplified in order to find the Riemann
tensor of submanifold N. After that, the Ricci tensor and scalar of the submanifold is calculated.
At last, submanifold NV is taken to be a flat Euclidean manifold. The solution of these conditions
is supposed to satisfy the submanifold’s Ricci scalar. Furthermore, we will evaluate the solution’s
compatibility to submanifold’s Ricci and Riemann tensor. This compatibility evaluation is
limited only to the dimensional aspect.

2. Manifold M as a stationary manifold

As a stationary manifold, M has a time-like Killing vector. It means that the metric is invariant
under time-like translation transformation. Generally, the time axis of the manifold is not
orthogonal with its spatial hypersurface, so that the metric will not be invariant under time
reversal transformation. The metric of the ambient M is taken to be

€ i - i 7,7
ds? = E(dt + aydx )2 +w29ijd3: dz’. (1)

In order to ensure the stationarity of the manifold, the a; and w should be the function of
spatial parameter only. The € in the metric has only two values, —1 or +1. If ¢ = 1, then M is

a Riemannian manifold, but if e = —1, then M is a Lorentzian manifold. [2] Into the metric of
manifold M, a general form of metric N,
ds? = gyjdx'dad, (2)

is embedded. Note that we take Latin index which runs from 1 to n and Greek index which
runs from 0 to n. It is important to consider that Einstein’s summation convention is used.

By using the metric, we are able to calculate the Riemann tensor [1] of manifold M. The
components of the Riemann tensor are written as follow.

€ 4de € .
Roioj = —3ViVjw = 3 ViwVjw + Jvkkawgm’ o 6F Eji (3)
2
ROijk = vaf‘}k — iviV[jwak} — ivzwﬂk + iF»[-Vk]w
4 GF oz[JFlk] % 3gl[ij]lv w + V WV[JWQM (4)

€ !
fﬂgi[jak]v wVw
Rijiw = w?Rij +w(GipV 'Vk]w = 9;iViViw) — 2V wg; i Vow

gz[kg]l]v wVpw+ —5 (Oé[lVﬂFkl + a[kV”FZj)

2w
2€
—mFi[ijl} Fngkl (Of[z Wl + ap VywE;)
€
—@(V[injnkan + V[kwﬂni%ﬂ ~ 50V, Viway (5)
€ - m A m
_ng(a[igj][kFl}mv w + apdniFjm V™ w)

4e
Oz[zgj][koq]v wvmw—l— Oé[z ]wv[kwal]

1
+ e i En " e Fym

In the equations above, there is tensor which can be associated with field strength tensor, Fj;,
and defined as
Fij = 0j0y). (6)
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Notation V denotes covariant derivative operator and 9 denotes partial derivative operator.
The parenthesis or bracket symbol written before or after an index represents a symmetrical or
antisymmetrical operation which is defined as

A(aBb) = A,By, + Ay B, (7)
A[aBb] = AaBb — AbBa (8)

Note that the Rijkl in equation (5) is the Riemann tensor of submanifold N which is defined as

A

Rijit = Gim Ok — QL7 + TR I — L), (9)
where f‘;k denotes the Christoffel symbold of the submanifold.

3. Manifold M as a maximally symmetric space

As an n + 1 dimensional maximally symmetric space, manifold M has (n + 1)(n + 2) Killing
vectors. By definition [3], the Riemann tensor of manifold M should satisfy the following
equation.

R,uowﬁ = /i(g,ul/gaﬁ - g,uﬁgau) (10)

By using the metric components of M, the Riemann tensor of maximally symmetric manifold
M can be calculated and satisfies the following equation.

Roioj = €rgij (11)
Roij = —eKgijoy (12)
Riji = —erapd;nay + sw'dind; (13)

These results should be equated to the Riemann tensor which has been obtained in equation
(3), (4), and (5) in order to maintain the consistency of manifold M.

4. Manifold N with pure gauge condition

Gauge formulation is related to the transformation of field or gauge. In the metric, we can
assume that oy is a vector field and w is a scalar field. Pure gauge condition is a situation when
gauge transformation is applied to a null field. [4] In an abelian case, where gauge transformation
can be written as

Ay(z) — AL(x) =Au(x) + 0, f(x), (14)
then, if the transformation is applied to a null field, we obtain
AL(m) = 0uf(x). (15)

Therefore, if the "field strength tensor” Fj; has vector field «; which is abelian, then, by applying
a pure gauge like condition, we can suppose that

() = 0ig(x). (16)

Consequently, under this condition, the Fj; tensor vanishes.
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After equating the Riemann tensor of stationary manifold M, which is shown in equation (3)
to (5), to the maximally symmetric one, which is shown in equation (11) to (13), and applying
the pure gauge like condition, we could obtain

4
Engij == %Vivjw - ;iviWij + ivkkaw.@i]’ (17)
. € de
ERGi[j0n] = Evivuwak] — Eviwvuwak]
€ .
—I—Jgi[jak]vlwvlw (18)
kwGing — ekapgnrey = w Riw + w(Gi Vi Viw — 45 ViViw) — 2V wdpVw
. om €
—gi[kgﬂ]v wVpmw — Ea[ivj]v[kwal] (19)

€ . m 4e
—Ja[igj][koq]v wVpw + Ja[ivﬂwv[kwal]

Note that the equation (18) is similar to equation (17). Substitute this equation into equation
(19), then rearrange and simplify the equation, so that we obtain

o 1 . .
Rijn = 2"“‘)292'[k9jl]+%(gi[kvl]vjw_gj[kvl}viw) (20)

which will be used as the Riemann tensor of submanifold N for the next calculation. Ricci
tensor and scalar of the submanifold are calculated and obtained as follow.

A 1
Rij = 2(n—1)rw?g; + %(szvkvkw +(n—2)V;Vjw) (21)
R = 2n(n—1)kw?+ %(n ~1)V'Vw (22)

5. Manifold N as a flat manifold
In this part, we specify the submanifold N as a flat Euclidean manifold. As a result, the
submanifold’s Ricci scalar R vanishes and equation (22) becomes

Aw + 2nkw® =0 (23)

where A = V'V, is a Laplace-Beltrami operator. This equation is a non-linear differential
equation which cannot be solved easily. However, we attempt a trial to solve the differential
equation and find the w which satisfies the equation. We assume that w is a function of distance
r in manifold IV .

For a flat Euclidean geometry, the metric of the manifold has form similar to Kronecker delta,

9ij = dij, (24)
so that the Laplace-Beltrami operator of the manifold would satisfy the following equation.
A =V'V; = 00 (25)

This flat manifold also has zero Ricci and Riemann tensor. Because w is taken to be the function
of distance r, it is convenient to choose coordinates where the corresponding distance is radially
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directed. Therefore, we could take the calculation in spherical coordinates in n dimensional flat
space. In this coordinates, the Laplacian operator can be written as
; 1 0 0 1
A=090=——r"1)+ SAgn-1, 26
! 7'”_187'( 87*) p2 S (26)
where Agn-1 is a Laplace-Beltrami operator on hypersurface of n-dimensional ball, (n—1)-sphere
(S™~1), known as (n — 1) dimensional spherical Laplacian that consists of angular parameters.
Thus, the differential equation (23) becomes

1 i (rn—l dﬂ
rn=1 dr dr

) + 2nkw® = 0. (27)

See that the n-dimensional differential equation has become a 1-dimensional differential equation
problem.

Although the dimension has been reduced, the problem is still difficult to be solved because
the equation (27) is still non-linear. The equation still has a second derivative term, a first
derivative term, and an w? term. Then, in order to simplify the problem, we should eliminate
the first derivative term. It can be done by defining variable u as follow.

u = r " (28)

By this definition, the differential equation (27) can be written in a simpler form as

d>w 2nk 2n—1) o
JuZ + (Q—n)2u =nw? = 0. (29)

Since the equation has been simplified, this equation is still a non-linear differential equation.
However, we would try to solve the differential equation as follow. Firstly, the equation is
rewritten as

d ., n d ., na
(%+zCu2*nw)(%—zCu2*nw)w =0 (30)

where C is a dimension depended coefficient C'(n). If w is a non-zero function, then

dw n—1

— +iCu>nw? =0 31
7y L CuTTw (31)
At this moment, we should not concern about the sign + because both of them will produce

similar results. Solving this equation will result as follow.

d—z = iCubndu

w

1 e / /

—— = iC'uzrn, C"'=C(n)

w

w = i, " =C"(n) (32)

This equation still has an arbitary coefficient C” which has to be determined. Substitute back
this solution into its differential equation (29) and we obtain

Yol Com
(anQ)Qui%((g “n)—2mkC"™) = 0. (33)
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This equation is satisfied if C” =0 or

(3—n)—2nkC™ =0 C" =+ 32;:. (34)

The C” = 0 should be excluded because it produces a trivial solution w. Hence, the solution w
is obtained as
n—3 _1_

wlu) ==+ o U (35)

Rewrite the w as a function of » and we obtain

n—3 _
w(r) ==+ o L (36)

The + or — solution must be stated separately because they cannot be combined linearly.
Moreover, any other possible solution of this differential equation is also not able to be combined
linearly. It is because of the non-linearity of the differential equation. The solutions may be
able to be combined in a special way, but it is not guaranteed.

Note that the solution gives a real value only if n > 3. When n = 3, the solution w is trivial,
while n < 3 will give an imaginary value of w. Therefore, the w gives a value which is physicaly
well defined only for n > 3. However, the solution is still mathematically permitted for all n
except for n = 0. It is important to consider that the trivial value of w for n = 3 will ruin the
calculation. When w = 0, the metric of manifold M becomes singular. Moreover, the singularity
of the manifold would disable any further calculation. Therefore, the solution w for n = 3 is not
physically well defined and should be excluded.

6. Examination of w as the solution of submanifold NV

In this part, we examine the compatibility of w as the solution of the submanifold. Firstly, we
would examine its compatibility as the solution of the Ricci scalar. After applying the w, the
Ricci scalar in equation (22) can be rewritten as follow.

A~

whi n—3 _3 n—3 n—3 5
— 2m€r (n —3) + 2nk( S 2n/{T ) = 0 (37)

This equation is satisfied if and only if R = 0, so that we believe that N with w stated in
equation (36) is a flat manifold. Note that the Ricci scalar always vanishes for any w for n = 1,
however it is actually a certainty.

After that, we would examine the w as the solution of the Ricci tensor. By applying the w,
we are able to rewritten the Ricci tensor mentioned in equation (21) as follow.

A n—3

wh; = —3(n—2) Oij _ it

r_?’(—

2Nk n r2

) (38)

Generally, equation (38) shows that fx’ij # 0. This equation vanishes if the following equation is
satisfied.

dij i §
S Titj =0 & TiTj = L(S” (39)
n

n r2

This equation cannot be satisfied generally. Multiply the equation by vector 27, then we obtain

2
rlr; # —x;. (40)
n
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However, the Ricci tensor in equation (38) vanishes for n = 2 or n = 3, and also if it satisfies
equation (39). Note that this equation is satisfied only if n = 1. Moreover, we should remember
that n = 3 should be excluded from the solution. Therefore, we can say, that w obtained in
equation (36), generally, is not the solution that gives Rij =0, except forn =1 and n = 2.
Finally, we would examine the w’s compatibility as the solution of the submanifold’s Riemann

tensor. By applying the w, the Riemann tensor stated in equation (20) can be rewritten as follow.

n—3 _,.2 1
r 3(551‘[15%] - ﬁx[iéj][kxl]) (41)

2wRin = 3
W15kl I

Generally, equation (41) shows that Rijkl # 0. This equation vanishes if the following equation
is satisfied.

2 1
SO — TEoky = 0
52‘1 ;X 5jk LT 5,]€ T 5j T _
(TL r2 )6]143 +( n r2 )5’Ll ( n r2 )6] (TL r2 )5Zk =0 (42)

This equation is similar to equation (39) and by the same argument, we can say that this
equation is also satisfied only for n = 1. Note that the Riemann tensor in equation (41) also
vanishes for n = 3. However, we should remember that n = 3 should be excluded from the
solution. Therefore, we can say, that w obtained in equation (36), generally, is not the solution
that gives Rijkl = 0, except for n = 1.

7. Conclusion

A stationary geometry is constructed of 2 manifolds where an n-dimensional manifold N is
embedded into an (n + 1)-dimensional manifold M. The ambient is assumed to be maximally
symmetric and satisfy the pure gauge like condition, while the submanifold is taken to be a
flat Euclidean manifold. The w is supposed to be the function of distance and satisfy the
submanifold’s Ricci scalar. This solution is obtained as stated in equation (36) and should be
examined as the solution of the submanifold. By taking the examination, there are several
conclusions corresponding to the solution compatibility of w as follow.

e w gives a real value for n > 3, an imaginary value for n < 3, and a trivial value for n = 3.

e The triviality of w for n = 3 makes the metric of M singular and should be excluded from
the solution.

e w is the solution that gives R =0 for all n except for n = 3.
e w is not the solution that gives Rij = 0 except for n =1 and n = 2.

e w is not the solution that gives ]f{ijkl = 0 except for n = 1.

By this consideration, it is convenient to say that w is not a general solution that satisfy flat
submanifold condition, but may be only a special solution or a subsolution of a more general
and complete solution.
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