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Abstract. In this paper, we provide an approximate analysis of an M/M/s queue using
the operator method (strong stability method). Indeed, we use this approach to study the
stability of the M/M/∞ system (ideal system), when it is subject to a small perturbation in
its structure (M/M/s is the resulting perturbed system). In other words, we are interested
in the approximation of the characteristics of an M/M/s system by those of an M/M/∞
one. For this purpose, we first determine the approximation conditions of the characteristics
of the perturbed system, and under these conditions we obtain the stability inequalities for the
stationary distribution of the queue size. To evaluate the performance of the proposed method,
we develop an algorithm which allows us to compute the various obtained theoretical results
and which is executed on the considered systems in order to compare its output results with
those of simulation.

1. Introduction
Multi-servers queues are analytically tractable queues of practical importance. However, the
analytical results of such systems are only available in terms of Laplace transforms or/and
generating functions which are often cumbersome and not useful in practice. To avoid and
circumvent this problem, many authors use numerical and approximation methods to analyze
such type of systems (see [5, 6, 7, 8]). On the other hand, many situations are modeled by a
multi-server queue, but for which we seek to have the average number of waiting customers to
tend to zero. This situation coincides with an infinite-servers queue that has the non waiting
property.

It is why we focus, in this work, on the strong stability method (see [1, 11]) which allows
us to make both qualitative and quantitative analysis helpful in understanding complicated
models by more simpler ones for which an evaluation can be made. This method, also called
”method of operators” can be used to investigate the ergodicity and stability of the stationary
and non-stationary characteristics of the imbedded Markov chains (see [11]). In contrast to other
methods, it supposes that the perturbations of the transition kernel are small with respect to
some norms in the operators space. This stringent condition gives better stability estimates and
enables us to find precise asymptotic expansions of the characteristics of the perturbed system.

The applicability of the strong stability method is well proved and documented in various
fields and for different purposes. In particular, it has been applied to several proposals (see for
example [2, 3, 4, 12]).

5th International Conference on Mathematical Modeling in Physical Sciences (IC-MSquare 2016) IOP Publishing
Journal of Physics: Conference Series 738 (2016) 012131 doi:10.1088/1742-6596/738/1/012131

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



This paper aims to study the strong stability of an M/M/∞ system (ideal system) after a
small perturbation of its structure (the M/M/s is the resulting perturbed system). We first
clarify the conditions for such an approximation, then we provide an upper bound for the norm
of the difference between the two stationary distributions of the considered systems. Note that
there is a first attempt to study this particular case of approximation of the M/M/s queue by
the M/M/∞ one, using the theory of Markov chains and the special norm L1 (see [9]). The
authors of this latter work had produced two important results. The first one is summarized
in the upper bound of the absolute difference (L1 norm) between the stationary probabilities of
the M/M/s and M/M/∞ systems, and in the second point the authors have proved that this
difference tends to zero when the number of servers tends to infinity. Unlike [9], we use here
the general weight norm (‖.‖v) instead of the norm L1 to approach the M/M/s system by the
M/M/∞ one. Moreover, we provide the domain within which this approximation is valid.

2. Description of M/M/s and M/M/∞ models
Let us consider an M/M/s system with s servers, where inter-arrival times are independently
distributed with an exponential distribution Eλ(t) and mean inter-arrival time 1/λ, and service
times are distributed with Eµ(t) (exponential with parameterµ).

Let Xk be the number of customers in the system just prior to the arrival of the kth customer.
Therefore, X = (Xk; k = 0, 1, . . .) is an homogeneous Markov chain with a state space
N = {0, 1, 2, . . .} and with a transition operator P = (Pij)i,j≥0 where:

Pij =
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Consider also an M/M/∞ system, with the same distributions of arrivals and service times as
in the previous system, and with no waiting room.
Let X̃k be the number of customers in the system just prior to the arrival of the kth customer.
Therefore, X̃ = (X̃k; k = 0, 1, . . .) is an homogeneous Markov chain with a state space

N = {0, 1, 2, . . .} and with a transition operator P̃ = (P̃ij)i,j≥0 where:

P̃ij =
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Let π and π̃ be, respectively, the stationary distributions of the M/M/s and M/M/∞ systems.
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3. The strong stability concept
3.1. Preliminary notations
LetM = {νj} be the space of finite measures on N, and let N = {f(j)} be the space of bounded
measurable functions on N. We associate with each transition kernel P the linear mapping:

(µP )k =
∑
j≥0

µjPik, (3)

(Pf)(k) =
∑
i≥0

f(i)Pki. (4)

Introduce on M the υ-norm of the form:

‖ν‖υ =
∑
j≥0

υ(j)|νj |, (5)

where υ(k) = βk, for all k ∈ N and β > 1 is a real parameter. This norm induces in the space
N the norm

‖f‖υ = sup
k≥0

|f(k)|
υ(k)

. (6)

Moreover, for all ν ∈M and f ∈ N , the symbols νf and f ◦ν denote respectively the summation
and the kernel defined as below

νf =
+∞∑
k=0

f(k)νk, (7)

(f ◦ µ)(k, j) = f(k)µj , for all (k, j) ∈ N×N. (8)

Let us consider B, the space of linear operators, with the norm

‖Q‖υ = sup
k≥0

1

υ(k)

∑
j≥0

υ(j)Qkj . (9)

3.2. Strong stability criteria
For more details on the strong stability method, see [1, 10, 11].
Let us give the definition of the strong stability (qualitative aspect) for an homogeneous Markov
chain in the phase state (N,B(N)) with respect to the υ-norm. Here B(N) is the σ-algebra
generated by the singletons {j}.
Definition 1 (see [1, 11]) A Markov chain X with a transition kernel P and an invariant
measure π is said to be strongly υ-stable with respect to the norm ‖.‖υ if ‖P‖υ < ∞ and each
stochastic kernel Q on the space (N,B(N)) in some neighborhood {Q : ‖Q − P‖ < ε} has a
unique invariant measure µ = µ(Q) and ‖π − µ‖υ → 0 as ‖Q− P‖υ → 0

4. Strong stability in the M/M/∞ system
4.1. Strong stability conditions
Proofs of the results provided in this section, are based on theoretical results (theorems and
corollaries) given in [1, 10].

Theorem 1 Suppose that in the M/M/∞ system, the condition λ/µ < 1 is fulfilled. Then,
there exists β ∈ ]1, µ/λ[ such that

ρ =

(
1

β

(
µ+ λβ2

λ+ µ

))
< 1. (10)

In addition, for all β such that 1 < β < µ/λ the embedded Markov chain X̃ is υ−strongly stable
for the test function υ(k) = βk.
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4.2. Strong stability estimates
Theorem 2 Suppose that the conditions of the preceding theorem hold. Then, for all 1 < β <
µ/λ, we have:

‖P − P̃‖υ =
α(1 + β2)

β(s+ α)
, (11)

and under the condition:

s ≥ α
((

1 + β2

β − 1

)(
1 + α

1− αβ

)(
1 + eα(β−1)

)
− 1

)
, (12)

we have

‖π − π̃‖υ ≤
α (1 + α)

(
1 + β2

) (
1 + eα(β−1)

) (
eα(β−1)

)
(s+ α) (β − 1) (1− αβ)− α (1 + α) (1 + β2)

(
1 + eα(β−1)

) = Bβ. (13)

Where α = λ/µ.

5. Numerical application
To be able to put into practice the previous theoretical results concerning the approximation of
the M/M/s system by the M/M/∞ one, we have developed the following algorithm:

5.1. Algorithm
Step 1. Introduce input parameters: inter-arrivals mean rate λ, number of servers s and service mean rate µ.

Step 2. Verify the existence of β0
if µ > λ then
the system is stable and goto step 3
else disp ’the system is not stable’ and goto step 7.

Step 3. Determine the constant β0 := argmax
β

ρ < 1.

Step 4. Determine the constant βmin:= argmin
β
{1 ≤ β ≤ β0/ the lowest value of β satisfying the condition (12)}.

Step 5. Determine the constant βmax:= argmax
β
{1 ≤ β ≤ β0/ the highest value of β satisfying the condition (12)}.

Step 6. Determine the constant βopt:= the value of β minimizing the bound (13) where βmin ≤ β ≤ βmax.
Step 7. end.

For numerical applications, we consider the two following situations:

5.2. Situation 1: Variation of the number of servers s of the M/M/s system
We fix the service rate µ = 10 and some values for λ (for example λ = 1 (ie. the load
α = λ/µ = 0.1) and λ = 3 (ie. α = 0.3)), and for each fixed value of α we vary the values of the
number of servers s. Then, for each value of s we compute the value of β minimizing the bound
(13). For this value of β noted βoptimal, we compute the minimal bound Bβoptimal (algorithmic
error). The obtained results are listed in table 1 (case α = 0.1) and table 2 (case α = 0.3).
The variations of the bound BβOptimal in function of s for the case α = 0.1 (respectively the
case α = 0.3) are represented in figure 1 (respectively figure 3). Figure 2 (respectively figure 4)
compares between the algorithmic and simulation errors in function of s for the case α = 0.1
(respectively the case α = 0.3).

5.3. Situation 2: Variation of the load α = λ/µ of the M/M/s system
We fix the service rate µ = 20, the number of servers s = 20, and we vary λ from 1 to 10 with step
0.5. Then, for each fixed value of α = λ/µ we compute the value of β minimizing the bound (13).
For this value of β noted βoptimal, we compute the minimal bound Bβoptimal (algorithmic error).
The obtained results are listed in table 3. The variations of the bound BβOptimal in function of
α are represented in figure 5. Figure 6 compares between the algorithmic and simulation errors
in function of α.
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Table 1. Values of βoptimal and Bβoptimal (case α = 0.1).

s βoptimal Error (Bβoptimal
)

1 × ×
2 1.9890 2.4503
3 1.9620 0.9668
4 1.9490 0.6020
5 1.9420 0.4370
6 1.9360 0.3430
7 1.9330 0.2823
8 1.9300 0.2398
9 1.9280 0.2084
10 1.9260 0.1843
11 1.9250 0.1652
12 1.9240 0.1497
13 1.9230 0.1369
14 1.9220 0.1260
15 1.9210 0.1168
16 1.9210 0.1088
17 1.9200 0.1019
18 1.9200 0.0958
19 1.9190 0.0903
20 1.9190 0.0855
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Figure 1. Variations of the bound
BβOptimal in function of s (case α = 0.1).
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Figure 2. Comparison of algorithmic
and simulation errors in function of s
(case α = 0.1).

Table 2. Values of βoptimal and Bβoptimal (case α = 0.3).

s βoptimal Error (Bβoptimal
)

≤ 9 × ×
10 1.6040 22.3974
11 1.5960 7.6876
12 1.5880 4.6363
13 1.5830 3.3175
14 1.5780 2.5822
15 1.5730 2.1133
16 1.5700 1.7883
17 1.5660 1.5498
18 1.5630 1.3674
19 1.5610 1.2233
20 1.5590 1.1067

Remark 1 The symbol (×) in the the different tables indicates that the system is unstable for
the fixed parameters and for the test function v(k) = βk.
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Figure 3. Variations of the bound
BβOptimal in function of s (case α = 0.3).
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Figure 4. Comparison of algorithmic
and simulation errors in function of s
(case α = 0.3).

Table 3. Values of βoptimal and Bβoptimal (case µ = 20 and s = 20).

α βoptimal Error (Bβoptimal
)

0.0500 2.1050 0.0322
0.0750 2.0020 0.0556
0.1000 1.9190 0.0855
0.1250 1.8490 0.1234
0.1500 1.7900 0.1718
0.1750 1.7380 0.2340
0.2000 1.6940 0.3152
0.2250 1.6540 0.4234
0.2500 1.6190 0.5716
0.2750 1.5870 0.7837
0.3000 1.5590 1.1067
0.3250 1.5330 1.6488
0.3500 1.5100 2.7282
0.3750 1.4890 5.8599
0.4000 1.4710 107.3026
α ≥ 0.4250 × ×
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Figure 5. Variations of the bound
BβOptimal in function of α.
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Figure 6. Comparison of algorithmic
and simulation errors in function of α.

5.4. Discussion of results
• The error (Bβ) decreases exponentially with the increase of the number of servers s (see

figures 1 and 3). Moreover, this error converges to zero when s becomes large. This
constatation confirms the tendency of the M/M/s system to behave as an M/M/∞ one,
when s is rather large. Note also that the system becomes stable starting from the value
s = 2 for the case α = 0.1 (see table 1), whereas it becomes stable starting from the value
s = 10 for the case α = 0.3 (see table 2). This highlights the role of the load α of the system
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in its stability.

• The conditions and the stability bound of the system depend exponentially on the
parameters of the system. Indeed, the error (Bβ) increases exponentially with the increase
of the load of the system α (see figure 5), where it passes from the stability state to the
instability state starting from the value α = 0.4250 (see table 3). This means that the
stability of the system is strictly related not only to the number of its servers but also to
its load.

• According to figures 2, 4 and 6, we notice that the simulation results are always lower
than the algorithmic ones. This confirms that the bound (Bβ) is an upper bound for the
deviation ‖π − π̃‖υ.

6. Conclusion
In this work, we applied for the first time the strong stability method on the M/M/∞ queue
which is subject to a small perturbation of its structure. The application of the method in
question, allows us to determine the stability conditions of the M/M/∞ system and to obtain
stability bounds for the stationary characteristics of the M/M/s system by those of the M/M/∞
one. To validate and to illustrate the manner in which the theoretical results can be exploited
in practice, we have presented numerical examples based on simulation studies. We may extend
this analysis to the approximation case of the GI/M/s system by the GI/M/∞ one.
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