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Abstract. Multi-dimensional transfer functions (MDTF) are occasionally designed as two-step 

approaches. At the first step, the constructed domain is modelled coarsely using global volume 

statistics and an initial transfer function (TF) is designed. Then, a finer classification is 

performed using local information to refine the TF design. In this study, both a new TF domain 

and a novel two-step MDTF strategy are proposed for visualization of abdominal organs. The 

proposed domain is generated by aligning the histograms of the slices, which are reconstructed 

based on user aligned majority axis/regions through an interactive Multi-Planar Reconstruction 

graphical user interface. It is shown that these user aligned histogram stacks (UAHS) exploit 

more a priori information by providing tissue specific inter-slice spatial domain knowledge. 

For initial TF design, UAHS are approximated using a multi-scale hierarchical Gaussian 

mixture model, which is designed to work in quasi real time. Then, a finer classification step is 

carried out for refinement of the initial result. Applications to several MRI data sets acquired 

with various sequences demonstrate improved visualization of abdomen.   

1.  Introduction 

Visualization of abdominal organs (kidneys, liver, and spleen) plays critical role in several clinical 

procedures including but not limited to surgery planning, treatment follow-ups, and education. 

Although there are many segmentation techniques developed for abdomen, they mostly rely on 

explicit classification of the voxels belonging to the organ of interest ignoring the rest of the data. 

However, in most of the cases, what is interesting from the clinical point of view is not only an organ 

or tissue itself, but also its relationships with the neighboring organs and/or vessel systems. Thus, even 

if the segmentation is perfectly realized, it is not possible to render it together with the adjacent 

tissues/organs and related vascular trees unless another segmentation process is performed for each 

object of interest [1]. 

5th International Conference on Mathematical Modeling in Physical Sciences (IC-MSquare 2016) IOP Publishing
Journal of Physics: Conference Series 738 (2016) 012122 doi:10.1088/1742-6596/738/1/012122

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



 

 

 

 

 

 

This limitation of segmentation motivates the development of complicated TF specification 

techniques which allow enhancement of potentially important features during the rendering. In other 

words, TF design provides suppression of the redundant data, while facilitating intervention of 

physician for further modifications over the complete volume. Moreover, TF design is the only 

interactive step of the direct volume rendering pipeline and intuitive design user interfaces allow 

production of informative renderings [2].  

TFs map data attributes (i.e. domain) to visual properties (i.e. range) such as color and opacity. In 

medical applications, domain should utilize enough features for discrimination of different 

tissues/organs. At the same time, complexity of user interaction and input dimensionality need to be 

considered carefully in order to preserve intuitiveness and better computational performance. In other 

words, tissues are usually indistinctive in low dimensional domains and the interactions become 

counterintuitive or infeasible in high dimensional ones. This trade-off between preserving intuitive 

user interaction and possessing a discriminative domain spurs ongoing research efforts in TF design.  

There are three main approaches of TF design: Manual [3], image-centric [9-12], and data-centric. 

Data-centric methods have been gaining more importance since they increase the classification 

capabilities of TFs. In this manner, iso-value determination [4], edge detection concepts [5], topology 

analysis [6], stochastic properties [7], texture characteristics and 3-D filter responses [13] are some of 

the proposed effective techniques. Various graphical user interfaces (GUIs) [15] and interaction 

mechanisms [16-17] have also been developed using multi-dimensional transfer functions (MDTF) 

[18-19].  

For medical visualization, recent studies show that incorporating medical domain knowledge 

through semantic expressions, anatomical/physiological information, and/or modality characteristics 

allow obtaining accurate renderings with a TF specification [20].  

The method proposed in this study shares the same strategy (i.e. coarse classification plus 

refinement) with the above discussed MDTF techniques. Compared to those, our method performs 

further steps on TF specification in the following aspects: First of all, a new and very intuitive TF 

domain is constructed by histogram stacks, which are calculated from reconstructed images (i.e. 

resampled volume data) based on user aligned majority axis through an Multi-Planar Reconstruction 

(MPR) user interface (Section 3). Secondly, a multi-scale hierarchical Gaussian Mixture Model 

(GMM) strategy, which is able to locate and roughly classify tissue of interest automatically and in 

(quasi) real time, is developed (Section 4). Thirdly, refinement of classification results based on spatial 

and morphological relations of the tissues of interest are performed. Finally, the developed approach is 

tested using various clinical abdominal MRI data sets with different sequence protocols (Section 5). 

2.  Data Sets 

The analyses in this study are applied to several MRI series, which are obtained by the Radiology 

Department of Dokuz Eylül University. The data sets are acquired using a 1,5T Philips MRI modality 

that produces 12 bit DICOM images with a resolution of 256 x 256. The data sets were retrospectively 

collected from the Picture Archiving and Communication System of the same department. Three 

different MRI sequences (i.e. T1-DUAL (in-phase), THRIVE, T1-WATS) are used to test the 

proposed method. Each of these sequences is routinely being used to scan the same part of the body, 

but they are obtained from different combinations of radiofrequency pulses and gradients [23]. The 

details of the characteristics of these data sets and the utilized sequences are given below and their 

sample images are illustrated in Figure 1. 

T1-DUAL (in phase) is a fat suppression sequence which uses the time differences in the z-axis 

recoveries of fat and water protons. The signal is acquired twice: first, when water and fat protons are 

in phase; and second, when they are out of phase (while excited protons are returning to their first 

position). By choosing the suitable time of echo, fat suppression can be accomplished by subtracting 

corresponding frequencies of fat and water signals. Thus, this sequence is very useful to understand 

the fat content. Being T1-weighted, T1-DUAL is very effective to identify blood and tissues that are 

rich in protein and helps in determining the lubrication levels. In this study, 14 data sets, which have 
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ISDs that vary between 5.5 mm and 9 mm (average 7.84 mm), x/y spacing is between 1.44 - 1.89 mm 

(average 1.61 mm) and the number of slices between 26 and 50 (average 36), are used. THRIVE is a 

fast imaging sequence that is obtained by scanning the liver consecutively in a short time with thin 

slices to obtain the response of a known lesion to a contrast agent. THRIVE provides observation of 

the signal increase originating from the contrast agent instead of image quality. In total, 7 THRIVE 

data sets with 2.5 mm of ISD are used. Due to this small ISD, these data sets have slices between 80 

and 110 (average 93). Although their ISDs are constant, x-y spacing changes between 1.56 and 1.97 

mm (average 1.67 mm). In this study, 5 THRIVE data sets are used. Finally, WATS (WATer 

Selective) is a high resolution T1-weighted fat suppression sequence. 5 WATS data sets used in this 

study have x-y spacing between 5.5 - 9 mm (average of 7.9 mm). Their x-y spacing changes between 

1.36 - 1.67 mm (average 1.43 mm) and the number of slices vary between 26 and 40 (average 37). 

 

            
(a) 

             
(b) 

               
(c) 

Figure 1. Sample abdominal images from sequences: a) T1-DUAL, b) THRIVE, c) WATS. 

3.  User Aligned Volume Histogram Stacks  

Construction of a User Aligned Histogram Stack (UAHS) is a simple procedure for a physician who 

uses MPR interfaces and tools during his/her daily workflow. By using the developed MPR interface, 

the physician determines a majority axis or region for the organ of interest. The majority axis can be a 

spline or a (piecewise) line and majority region can be an ellipse or a rectangle. The selection of the 

region or axis should be consistent with the shape and size of the organ of interest. As an example, the 

geometry of the kidney is elliptical in axial slices. Therefore, applying an elliptical region would be 

more effective than the others (Fig 2.a-c). As a second example, selecting a rectangular region to 

reconstruct the liver is not sensible, because its complex size would require a very large area. Thus, a 

spline based majority axis is better suited to represent the liver (red line in Fig 2.h). 

After this selection is done on a single MPR plane (axial, sagittal, or coronal), one of the remaining 

MPR planes is used to determine the slices, where the organ of interest is visible. This is a very simple 

5th International Conference on Mathematical Modeling in Physical Sciences (IC-MSquare 2016) IOP Publishing
Journal of Physics: Conference Series 738 (2016) 012122 doi:10.1088/1742-6596/738/1/012122

3



 

 

 

 

 

 

interaction that only needs the user to draw a line over the organ of interest (see Fig 2.b for the kidney 

and Fig 2.a or 2.b for the liver). 

 

             
   (a)                                       (b)                                   (c)                   (d)                    (e)                           

        
                   (f)                                      (g)                                   (h)                            (i)                 (j) 

Figure 2. Scattered signals at 90
o
 and 1.8 cm distance with 10, 0, and -10 dB SNR. 

 

These two interactions are the only ones required for the construction of UAHS. Next, the 

developed software generates new reconstructed images using these user inserted planes and by 

dividing the selected areas into new sampling planes (See Fig 2.d and 2.e for the kidney and Fig 2.i 

and 2.j for the liver). By aligning the histograms of each reconstructed image (Fig. 3), UAHS, which 

provides a new data representing the object of interest in a more focused way, is obtained (Fig. 4). 

 

 

 
 

Figure 3. Aligning the histograms of the 

reconstructed image slices.  

Figure 4. An example of UAHS.
 

 

 

4.  Approximation of UAHS via Gaussian Functions 

The gray values for organs of interest have varying intensity ranges and characteristics even for the 

same organ in different MRI acquisitions. However, by evaluating UAHS with respect to different MR 

sequences, some common characteristic properties are observed in UAHS. One of them is that UAHS 

becomes narrower at the beginning or end slices and widens in the middle slices. It should be noted 
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that the use of DICOM image series, which supply large numbers of gray levels, is necessary to obtain 

a compact desired histogram. The other important point is that the desired histogram should be 

distinguishable from the unwanted components/tissues. This distinction in UAHS generates two 

valleys in both sides of the UAHS. Figure 5 illustrates three examples of UAHS data, which are 

obtained using the developed GUI and for liver visualization, along with their desired counterparts. 

 

     
(a)                                                  (b)                                                (c) 

     
(d)                                                   (e)                                                (f)  

Figure 5. (a)-(c) Top view of resultant UAHS of the GUI constructed for liver visualization 

from different MRI sequences, (d)-(f) Top view of their respective desired counterparts. 

 

The UAHS should be modeled in order to determine the valleys in a robust manner. Thus, the 

selection of the lobes from the UAHS requires an approximation to obtain the desired lobes. For 

modeling a UAHS, some important issues must be taken into account. One of them is the non-smooth 

structure of UAHS because of the intensity fluctuations of MRI. The second problem is the variability 

in the gray level range of the same organ among slices. The third problem is the slice thickness of the 

MRI data that causes a limited sampling in z-direction and results in a high inter-slice distance. 

The shape of the UAHS is like a bell curve with a certain radius and intensity. In the center of the 

UAHS, there exist a lot of pixels that create high amplitude bells, each of which is called a “lobe”.  

Gaussian function is a good approximation for fitting the lobes of UAHS. Besides, defining the UAHS 

in terms of Gaussian functions provides an intuitive initial TF design employing the parameters of 

Gaussian function. Various possible Gaussian basis functions can be created as a filter bank 

employing multiple orientation and scale values.  

In this study, by considering the above mentioned criteria, a hierarchical and multi-scale modeling 

is proposed. In an iterative manner, the proposed model tries to find the best Gaussian basis to fit the 

corresponding lobe of the UAHS. The developed algorithm provides a procedure for capturing all the 

suppressed lobes of importance in a successive manner by associating the lobes with a suitable number 

of Gaussian basis functions. 

Using different scales provides the user with the convenience of expressing different lobes in the 

right way. However, the characteristics of UAHS demonstrate that lobes can have curvy structures. 

The best approximation for these curvy parts is to integrate the rotation parameter to the algorithm as 

an extra degree of freedom. For a fixed scale parameter, the best rotation parameter is determined 

through the calculation of correlation between the Gaussian basis functions and UAHS. Correlation 
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can be calculated in an easier way in the frequency domain by multiplying the Fourier transform of the 

UAHS by the conjugate of the Fourier transform of the Gaussian basis function. 

A rotated and axis scaled Gaussian basis function can be expressed with respect to given 𝑎, 𝜃, and 

𝜀 parameters as follows; 

                      
1 2 2 2 21/2( ( ( 'cos 'sin ) ) ( 'sin 'cos ) )

, ( ', ') a x y a x y

ag x y e     


                         (1) 

where, variable 𝑎 is the axis scaling parameter of the transformation. The rotation variable 𝜃 controls 

the orientation and has a critical importance on finding the appropriate basis function that fits the 

corresponding lobe of the UAHS. Figure 6 shows the top and side views of the Gaussian basis 

functions which have the same 𝑎 and 𝜀 parameters, but different 𝜃 parameter values.  

 

 
(a)                                                  (b)                                                (c) 

 

 
(d)                                                   (e)                                                (f) 

Figure 6 2-D Gaussian functions with respect to different angles (a)-(c) Top view (d)-(f) Side view. 

Let us denote our final approximated UAHS as ( , )UAHS x y  which is formed by combining all 

approximating Gaussian basis functions in an additive manner. However, before combining the 

suitable Gaussian basis functions, the best rotation angle among all possible choices of angles must be 

determined in an iterative manner. Here, each iteration corresponds to a different scale. Iterations start 

from the largest scale value and continue until the smallest scale value in a hierarchical manner. In our 

simulations, we used 8 different scale values. Thus, denoting the number of iterations by 𝑁, we have 

𝑁 = 8. For each scale, 𝜃 is varied from 0 up to a maximum of 170 degrees with an increment of 10 

degrees. Thus, 𝜃 = {0,10, … ,170} defines the vector of rotations. Denoting the length of the vector, 𝜃, 

by M, we have M=18. .Corr  is defined as the 2-D correlation operation between Gaussian basis 

function, , ( ', ')
i jag x y , and the UAHS which is represented by UAHS(x,y). For a fixed scale, the 

correlation is calculated for different rotations as: 

                              , Corr ( ', '), ( , )
i jj aCorr g x y UAHS x y                                                (2) 

In Equation 3, we represent the best rotation angle as ̂  which corresponds to the maximum 

correlation between UAHS and Gaussian basis functions.  

5th International Conference on Mathematical Modeling in Physical Sciences (IC-MSquare 2016) IOP Publishing
Journal of Physics: Conference Series 738 (2016) 012122 doi:10.1088/1742-6596/738/1/012122

6



 

 

 

 

 

 

                                 ,
1

ˆ=argmax ( ', '), ( , )
i j

j

M

a
j

Corr g x y UAHS x y



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                                    (3) 

We can express our approximated ( , )UAHS x y  as a weighted summation of the rotated and axis 

scaled Gaussian basis functions, , ( ', ')
i jag x y .  

                                ,

1 1

( , ) ( ', ')
i j

N M

j a

i j

UAHS x y w g x y
 

                                            (4 

 where 
1 ;    max correlation for scale  among all possible  angles

0 ;   for the rest of the  angles 

i j

j

j

a
w






 


 

After approximating the UAHS, a method should be used to threshold the approximated UAHS by 

determining the two valleys so that upper and lower thresholds can be assigned correctly. Our main 

goal is to determine the two threshold values which correspond to the valleys on the left and right 

sides of the corresponding lobe of the organ of interest. As stated before, the main idea behind the 

Gaussian modeling is to find the basis functions that best fit the desired lobes and then to determine a 

threshold range to express the region of interest in the UAHS. Thus, after the Gaussian fitting step, as 

seen in Figure 7.a, the gray levels which belong to the organ of interest are grouped together. The 

center of the group is indicated by the mean of the gray levels, which are obtained via points through 

which the spline passes. The points, at which the tail of each Gaussian becomes zero, indicate the 

threshold range. As seen in Figure 7.b, a varying threshold range can be obtained using the Gaussian 

bases which are found by the multi-scale hierarchical model. 
 

   
                                           (a)                                                                              (b) 

Figure 7. (a) The resultant approximating Gaussian functions (b) Top view of the resultant 

approximation of Gaussian functions with a varying threshold range represented by red lines. 

5.  Application and Results 

The developed method is evaluated using well established segmentation metrics including the area 

error rate (AER), which is defined as the area difference between the region segmented by the 

algorithm and the region segmented manually [21]. Volumetric overlap error (VOE) is similar to AER 

criterion where, 0 indicates perfect segmentation with no limitation for any upper bound [22]. Besides 

the difference in volume values, conformational characteristics of the obtained segmentation results 

are also important. For this purpose, Symmetric Surface Distance (SSD) metrics are also used for 

performance evaluations [22]. SSD allows the comparison of segmented 3-D organ with the reference 

3-D organ by using surface voxels of a 3-D object. The surface voxels are defined according to at least 

one voxel that does not belong to the object in 18 possible neighboring. For each surface voxel in the 

reference organ, the distance to the surface voxel in the segmented organ is calculated according to the 
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Euclidean Distance Metric via different formulations that produce Average SSD (ASSD), Maximum 

SSD (MSSD), and RMS SSD (RSSD). 

     Some visual examples of the results are given in Figure 8 and calculated metrics for all the data sets 

are given in Table 1. Red pixels show True Positive pixels after the thresholding process. This means 

that the red pixels are classified as the organ of interest and these pixels are actual organ pixels. 

Therefore, it can be stated that by using Gaussian approximations and the thresholding process, the 

segmentation of the organ is accomplished substantially. Green pixels of the images represent the 

organ pixels which are not found by our algorithm. Finally, blue pixels are the pixels which belong to 

the unwanted pixels/neighboring tissues but are found as belonging to the organ of interest by our 

algorithm. Observing Figure 8, it can be stated that using the coarse approximation at the first and last 

slices is not enough for segmentation. In contrast to the first and last slices, in the middle of the image 

series our algorithm performs better. 

 

 

                 

 

 

Figure 8 (From left to right) MPR images belonging to T1 WATS with slice numbers 3-11-21. T1-

DUAL with slice numbers 12-18-24 and THRIVE with slice numbers 2-10-22. 

 

The results show that the proposed approach can provide acceptable initial classification results by 

approximating the lobes of UAHS using proposed GMM strategy (i.e. see the first three rows of Table 

1). On the other hand, these results must be enhanced for obtaining clinically usable visualizations. In 

this study, the finer classification steps include binary morphological operations and region growing 

using initial coarse classification results. The last three rows of Table 1 show that post-processing 

operations can significantly improve the results, since the initial model obtained by GMM is 

satisfactory. Future work could include using statistical shape models which would be initialized by 

the proposed GMM strategy. 

 

Table 1. Comparison of the average metric results of all sequences before and after region growing. 

 Dataset  ASSD  RSSD  MSSD  AHO        VHO 

Without 

Post-

Processing 

T1 DUAL 3.69 6.72  34.30 53.89 44.69 

T1 WATS 6.95 11.37 46.47 54.04 52.46 

THRIVE 6.13 10.22 42.60 42.82 44.06 

With Post-

Processing 
(Region Growing) 

T1 DUAL 3.88 6.84 35.21 59.93 42.03 

T1 WATS 1.73 2.61 18.75 33.61 28.70 

THRIVE 2.97 3.97 17.69 29.62 28.51 
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