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Abstract. The article deals with one-dimensional problem of rise-time distortion signal 

without carrying signal, that appears in the starting point intermittently, that is signal distortion 

at front edge or one of its derivative. The authors show that front edge of signal isn’t distorted 

in case of propagation in unrestricted (including absorbing) area (amplitude of starting signal 

step or of one of its derivatives doesn’t change) and move with the accuracy of vacuum light 

speed. The paper proves that it is the time interval shortage that causes signal loss with the 

route extension, but not the reduction of its starting amplitude, during which front edge of 

signal retains its starting value. The research presents new values for this time interval.  

1.  Introduction 

The matter of rise-time distortion of the signal as it propagates in a material medium has got a long 

history, but it is still researched today (see [1-7]). The papers quoted above deal with signal with 

“carrier frequency”; this paper deals with the rising edge of video signal, i.e. signal "without carrier 

frequency". 

Let’s consider the signal )(tE as it propagates in a medium with complex dielectric constant 

)( and refractive index )()(  n . It’s evident that 




 dttitEE )exp()()(  , 

  





  dtiEtE )exp()(2)(

1
, where )(E  is the frequency spectrum of the signal in the 

starting point ( 0z ). As the signal propagates, with increase of path length z , both its spectrum 

),( zE   and its time dependence ),( ztE  change. 

After the signal goes a path the length of which is z  in a homogeneous medium with wave number 

)()()(  nck  , we have the frequency spectrum of the signal: )(),(),(  EzFzE   where 

),())(exp(),( zFzcizF def    where ))(exp( zci   is the frequency characteristic of the 

ideal delay line (for the time of “light delay"; further, to reduce writing, we usually imply this delay, 

but do not explicitly write it), and   1)()(exp),(   ncizFdef  is the additional (with 

respect to the latter) part of frequency characteristic of the above-mentioned filter, that describes the 

deformation (distortion) of the signal as it propagates in the medium. 

To be specific, let’s consider the case of collisional plasma; as it turns out, basically the obtained 

results are of much more general character. For the plasma, we have the dielectric constant [8.9] 

5th International Conference on Mathematical Modeling in Physical Sciences (IC-MSquare 2016) IOP Publishing
Journal of Physics: Conference Series 738 (2016) 012118 doi:10.1088/1742-6596/738/1/012118

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



 

 

 

 

 

 

   222222 )(1)(   pp i , where   2124 mnep   - is the plasma 

frequency,  - is the effective collision frequency.  

The first three expansion terms ),( zFdef  in series in powers of 1  are 

         22
8221),(  ppppppdef zkzkzkizF  , where  ck pp  . 

To understand further analysis it is necessary to recall that in the theory of complex variable 

functions there is a theorem on the uniqueness of analytical function (see [10]) which states that two 

analytic functions coinciding on any finite section of real axis, coincide on all real axis. In particular, 

the analytical function which is identically zero on some section of the real axis is identically zero on 

all real axis. In our case, this means that the signal )(tE , which is the analytical function of real 

variable t  in point 0z  and is not identically zero, can not become 0 on any finite section of real axis 

t - in particular, it can not satisfy the condition 0)( tE  if 0tt  . This means that such signal existed, 

exists and will always exist (if  t ), and basically it can not be used to transmit 

information. 

Indeed, in any point in space z  at any given time t  the part of the signal received at all previous 

times is already available for analysis. By this part of the signal, in accordance with the above-

mentioned theorem on the uniqueness of analytical function, its time dependence at any past or future 

point of time can be basically reconstructed. Therefore, no signal used to transmit information can be 

the analytical function on all real axis; it can coincide with the analytical function only if 0tt  , where 

0t  - is the time of the signal’s emergence. The point 0t  here is the point of breach of analyticity, 

which usually manifests itself as a breach of the time dependence of the signal and (or) its derivatives. 

The main purpose of this paper is to research, how exactly this breach of the time dependence of the 

signal in the starting point and its near neighborhood look after the signal goes a path the length of 

which is z in a substance. 

2.  Results 

Let’s suppose the signal )(tE  with sharp rising edge propagates in the medium, it emerges in the 

starting point 0z  at the point of time 0t  ( 0)( tE  if 0tt  , 0)( tE  if 0tt  ). Then for the 

asymptotics (if  ) of the spectrum of such signal in the starting point 0z  , with third order 

accuracy in powers of 1 , we have (see Appendix) 

        3
0

2
0

1
00 )()()(exp)(

   itEitEitEtiE , where )(),(),( 000 tEtEtE  - is 

the value of the signal and its first derivatives on the edge, fully describing (See Appendix) the 

relevant terms of its spectrum’s high-frequency asymptotics. The result for the signal’s spectrum in 

point z  (with third order accuracy in powers /1 ) is: 

        3
0

2
0

1
00 ),(),(),(exp),(

   iztEiztEiztEtizE , where )(),( 00 tEztE  , 

    ppzktEtEztE )(21)(),( 000  , 

           22
0000 8121)()(21)(),( zkzktEzktEtEztE pppppp    - are the values 

of the amplitude of the signal and its two first derivatives on the edge (if 0tt  ) in point z. Let us 

discuss the characteristics of the changes of the rising edge of the signal, that emerges as a jump in 

point 0z  at the point at time 0tt   ( 0)( tE  if 0tt  , 0)( 0 tE ), as it propagates in the 

medium, that is let us make some obvious conclusions from the above formulae. 

1. In the case of signal amplitude jumping from 0 to final value 0)( 0 tE at the point of time 0t  in 

starting point 0z , its amplitude also jumps from 0 to the same final value 0)( 0 tE  in any other 
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point in space z  at the point of time czt /0   corresponding to the light delay time of the signal’s 

edge. In other words, the amplitude of the initial jump of the signal propagating in an arbitrary 

medium (including an absorbing or an amplifying one) does not change, and the delay time of its 

rising edge in any medium is exactly equal to the light delay time. We would like to emphasize that 

the delay time of the initial jump (that is, the rising edge of the signal) can not be less or more than 

"the light delay", that is, no "early" or "late" appearance of the rising jump is possible. 

The fact that this conclusion does not refer to any particular medium (for example, collisional 

plasma), but it refers to any arbitrary material medium, is connected with the aspect that in the most 

general case (see [8]), if   , the dielectric constant of an arbitrary medium with an accuracy up 

to terms of order  
22 p  (   2124 mnep   where n - is the total content of free and bound 

electrons in the medium) is
221)(  p and, if  , it tends to 1. 

Of course, in any dispersive medium signal deformation occurs - it is distorted (usually stretched) 

and its amplitude decays; in an absorbing medium, in addition to this, the signal is attenuated (i.e., its 

energy is lost), but all this is not related to the amplitude of the signal’s rising edge – the latter never 

changes. As an example, the figure below shows the numerical results for the time dependence of 

square wave signal (a) after it goes path pkz 10  in collisionless plasma 0  (b) and in 

collisional plasma p   (c). "Light delay" is not shown. Line (d) shows the "linear" approximation, 

used to assess the time interval during which the initial amplitude of the signal remains the same. 

 

 
Figure 1. Time dependence of the signal 

 

2. To estimate the duration of the time interval during which the signal which emerges as a jump 

maintains the amplitude close to that of the initial jump in any arbitrary medium, for the energy of the 

signal’s rising pulse we have the following approximate estimates:  zk ppfr  2 , 

 zktEtEW ppfrfr  3)(23)( 0
2

0
2  . You can get evaluation formula 

  pulsedef nemcz  2
02  for the characteristic weak distortion distance of the square-wave pulse. 

3. Similarly let us consider the signals, on the rising edge of which there’s a breach of time 

dependence not of the signal as such, but only of its derivatives of order k and higher: 0)( tE  if 

0tt  , 0)( tE  if 0tt  ,  0)( 0  tE ,…, 0)( 0
)1(  tE k

, 0)( 0
)( tE k

.It is easy to show that in 

this case, as the signal propagates in the medium, it is the value of the jump of the derivative )( 0
)( tE k

 

that does not change; as a result in the arbitrary medium  the amplitude of the rising pulse of the signal 
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slowly decays in accordance with the law    kp
k

p
k
p

k
fr zkzktEE 1~)()(~ 0

)(  , and the duration is 

still determined by the law  zk ppfr  1~  . 

Appendix  

Let us research the Fourier spectrum )(E  that exists for a limited period of time (within the 

range ],[ 21 tt ) of smooth signal )(tE with sharp rising edge 1t  and falling edge 2t  ( 0)( tE  if 1tt   

and 2tt  , 0)( tE  if 21 ttt  ). Obviously  
2

1

)exp()()(
t

t

dttitEE  , 

  





  dtiEtE )exp()(2)(

1
. After n-fold integration by parts ( n ), the first of these 

formulae can be written as an asymptotic formula   







0

)(1 2

1

)()exp()(
k

t

t

kk
tEitiE  . The 

latter formula demonstrates a direct link between the breaches of the signal on the rising and falling 

edges and the asymptotic behaviour (if  ) of its spectrum. Of course, the noted connection 

between the asymptotics of the signal spectrum, if  , and the character of its breaches can be 

used "reverse" too - the presence of relevant terms in the asymptotics of the signal’s spectrum 

indicates that the signal itself (or its derivatives of the corresponding order) are experiencing breaches 

of the corresponding rank and amplitude at the relevant points of time. This fact allows, while 

researching the rising edge of the signal, limiting yourself to the minimum amount of information 

about the properties of the medium, i.e. the first few expansion terms of its refractive index in series in 

powers of /1 .  

References 

[1] Sommerfeld A 1914 Ann. Phys. 44 177 

[2] Brillouin L 1914 Ann. Phys. 44 203 

[3] Maske B and Segard B 2012 Phys. Rev. A 86 013837 

[4] Maske B and Segard B 2013 Phys. Rev. A 87 043830 

[5] Akulshin A M, McLean R J 2010 Journal of Optics 12 104001 

[6] Malykin G B, Romanets E A 2012 Optics and Spectroscopy 112 920 

[7] Bukhman N 2007 J. Commun. Technol. Electron. 52 555 

[8] Landau L D and Lifshits E M 1960 Electrodynamics of Continuous Media (Oxford: Pergamon 

Press). 

[9] Vinogradova M B, Rudenko O V and Sukhorukov A P 1979 The Wave Theory (Moscow: 

Nauka) 

[10] Smirnov V I The higher mathematics course 1974 vol 3 part 2 (Moscow: Nauka) p 72 

5th International Conference on Mathematical Modeling in Physical Sciences (IC-MSquare 2016) IOP Publishing
Journal of Physics: Conference Series 738 (2016) 012118 doi:10.1088/1742-6596/738/1/012118

4


