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Abstract. Ion channel systems are a class of proteins that reside in the membranes of all
biological cells and forms conduction pores that regulate the transport of ions into and out of
cells. They can be investigated theoretically in the microcanonical formalism since the number
of accessible states can be easily evaluated by using the Stirling approximation to deal with
factorials. In this work, we have used gamma function (Γ (n)) to solve the two-state or open-close
channel model without any approximation. New values are calculated for the open probability
(p0) and the relative error between our numerical results and the approximate one using Stirling
formula is presented. This error (papp0 − p0) /p0 is significant for small channel systems.

1. Introduction
The interest in ion channel systems of all biological cells has increased greatly. They are a
class of proteins that reside in the membranes of the cells and forms conduction pores that
regulate the transport of ions into and out of cells [1]. One of their important functions is the
conduction of action potentials in neurons. The equilibrium value function or the probability
of finding a channel in the open state at equilibrium is crucial in the channel kinetics for fitting
the experimental data. The probability is generally described by the Boltzmann statistics [2]
and shows a direct proportion with the membrane potential. Boltzmann curves are sigmoidal-
shaped curves on linear plot of open probability against potential. They are proved to be
adequate for describing the steady-state data from many experiments [3]. So far, a more
detailed theoretical explanation of the curves based on the free energy minimization, generalized
statistical mechanics, and Monte-Carlo simulation technique has already been published by us
[4, 5, 6]. In the previous work [4], we have defined the entropy in the microcanonical ensemble
in terms of open and closed channel populations and used the Stirling approximation to deal
with the factorials. Then we have minimized the free energy to derive the voltage-dependent
open state probability of a single channel.

In the present work, we propose a new methodology to define the equilibrium value
function for fitting the experimental data found during the measurements on small number
of specific channel clusters in excitable membranes [7]. The methodology is again based on the
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microcanonical formulation in statistical physics approach but it simply uses the definition of
gamma function instead of Stirling approximation.

2. The Model and Method
We consider a two-state (or open-close) channel system in which each channel is opened by the
movement of a single gating particle which carries a charge. At any moment, the particle is in
one of two positions, 1 and 2, and these are associated with closed and open states, respectively.
The positions 1 and 2 correspond to two wells (with energy levels ε1 and ε2) in energy profile,
and there is a single energy barrier between them. A simple expression for the internal energy
of such a system in the presence of a membrane potential (V ) is given by

E = n (1− p0) ε1 + np0ε2 + nqe0 (1− p0)V (1)

where n is total number of channels, e0 elementary electronic charge and q is the number of
charges on gating particle. In Eq. (1), p0 and 1-p0 are the open and closing probabilities of single
channel, respectively. The number of accessible states of the system is defined by

Ω =
n!

[n (1− p0)]! (np0)!
. (2)

Based on the Stirling approximation (lnn! ∼= n lnn − n), we obtain the familiar Boltzmann
entropy (S = k ln Ω) as

S = −nk [(1− p0) ln (1− p0) + p0 ln p0] (3)

where k is the Boltzmann constant. In the following, we call Eq. (3) as the approximated entropy.
The approximated Helmholtz free energy is given by the thermodynamic relation F = E − TS,
where T is the temperature. Using the minimization condition (∂F/∂p0 = 0) one obtains the
channels open probability for the static properties as follows:

papp0 =

{
1 + exp

[
−qe0
kT

(V − V0)
]}−1

(4)

where the superscript app denotes approximation and V0 [equal to − (ε1 − ε2) /qe0] is the voltage
at which half of the channels are open. Eq. (4) gives a sigmoidal shaped curves which start from
zero and increase gradually to one as the membrane potential rises. In the literature, most
of the data available from experiments done at different temperatures and in different axons
were fitted using Eq. (4). From the experimental recordings made at several bath temperatures,
Boltzmann parameters (such as q and V0) can easily be determined [2].

On the other hand, the use of Stirling approximation is generally justified in the
thermodynamic limit (n→∞). But, it generates significant errors with respect to the solution
using gamma function for small systems [8]. From the definitions of gamma function (GF)
(Γ (n+ 1) = n!), we can write a value for the number of accessible states as

ΩGF =
Γ (n+ 1)

Γ [n (1− p0) + 1] Γ (np0 + 1)
. (5)

Then, entropy (SGF = k ln ΩGF ) becomes

SGF = k {ln Γ (n+ 1)− ln Γ [n (1− p0) + 1]− ln Γ (np0 + 1)} . (6)

The free energy is now calculated by the formula

FGF = E − TSGF . (7)
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Using the condition ∂F/∂p0 = 0 we can finally obtain the following steady-state equation for
the channel opening:

ψ0 (np0 + 1) = ψ0 (n− np0 + 1) +
qe0
kT

(V − V0) (8)

where ψn (x) = dn+1

dxn+1 ln Γ (x) with ψ0 (x) = d
dx ln Γ (x) as in Refs. [8]. It is now possible to

establish a relationship between the value of open probability (p0), and the number of channels
in the membrane. From the solutions of Eq. (8) we have plotted p0 vs. V for several number of
channels in Fig. 1. Also, we have calculated the relative error (papp0 − p0) /p0 as functions of the
membrane voltage and channel number in Figs. 2 and 3, respectively. We will briefly discuss the
figures in the next section.

3. Results and Discussion
In our calculations, we have considered the voltage-gated potassium channels from xenopus
oocytes [9]. Using several values of n, the value of probability of channel opening as function of
the applied voltage is shown in Fig. 1 for the experiment illustrated in Ref. [9] with the parameter
values V0 = −42 mV, kT/qe0 = 4.8. From the figure one can see that equilibrium value function
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Figure 1: (a) Open probability vs. membrane voltage for the sizes n = 1, n = 3, n = 5 and
n =∞. (b) Same as Fig. 1 (a) but for n = 10, n = 102, n = 103.

gives a sigmoidal-shaped curve on linear plot of p0 against V , i.e. it rises to 1 from zero as the
value of V grows, as in the previous works [3, 4, 5, 6]. This figure also shows the effect of number
of channels on p0. An increase in the number of channels located on the membrane alters the
steepness of the p0−V relation at midpoint potential (V0) being smaller with higher values of n
and the solution of Eq. (8) reduces to one using Stirling approximation or Eq. (4) when n→∞
as expected. This corresponds to a sharp increase of the probability for opening in an ensemble
of many potassium channels (or high channel densities) observed at potentials around V ≈ −60
mV. In contrast, at low channel densities the chances for finding channels in open state shift to
more negative potentials below V = −60 mV. The relative error (papp0 − p0) /p0 is depicted in
Fig. 2 as a function of V for four different sizes (n = 5, n = 10, n = 102, n = 103). For membranes
with very small number of channels n < 100, the difference between the approximated and new
open probability values is relevant in the voltages below V = −40 mV. For larger membranes
with n > 103 channels the error is lower but it is still relevant for very low voltages. In Fig.
3, the relative error is also shown in terms of system size (n) for different values of voltages
(V = −50,−55,−60,−70,−75,−85,−90 mV). It becomes clear from the figure that for sizes
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Figure 2: Open probability relative error of the two-state ion channel system in terms of the
membrane potential. The diffferent curves are for four sizes.
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Figure 3: Open probability relative error of the two-state ion channel system in terms of the
system size. The diffferent curves are for seven membrane voltages.

smaller than n = 102 the difference between the approximated and new open probabilities can
be significant.

4. Conclusion
In this work, a two state (open-close) ion channel model of biological membranes has been
solved. The same system has already been considered in microcanonical ensemble using
Stirling approximation in many references. We have presented an analysis of the model in
the microcanonical formalism without any approximation but using gamma function and its
derivatives. From this analysis we conclude that we observe an excellent matching of our
calculations and the one using Stirling approximation in the limit n → ∞. Above result is
also consistent with the experimentally observed data at high channel densities. According to
the voltage-clamp data [9], the mechanism of membrane potential stabilization is determined
at high channel densities by the activation-deactivation rates while it is only affected by the
inactivation process at low densities with small number of channel populations. It other words,
the characteristics of voltage fluctuations for small number of channels reflect the competition
between voltage-dependent rates of transition and the voltage-independent one [10]. This leads
to a noticeable difference between two approaches at lower potential regime for smaller sizes
(n < 100). From the conceptual viewpoint, this is known as a lower bound to the Stirling
approximation just as in Ref. [8]. Our results also develop a useful approach in the steady-state
studies of channels that are not voltage-gated.
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