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Abstract. This paper describes a mathematical model of the main fracture isolation in porous 

media by water-based mature gels. While modeling injection, water infiltration from the gel 

pack through fracture walls is taking into account, due to which the polymer concentration 

changes and the residual water resistance factor changes as a consequence. The salutation 

predicts velocity and pressure fields of the non-Newtonian incompressible fluid filtration for 

conditions of a non-deformable formation as well as a gel front trajectory in the fracture. 

The mathematical model of agent injection into the main fracture is based on the fundamental 

laws of continuum mechanics conservation describing the flow of non-Newtonian and 

Newtonian fluids separated by an interface plane in a flat channel with permeable walls. The 

mathematical model is based on a one-dimensional isothermal approximation, with dynamic 

parameters pressure and velocity, averaged over the fracture section.  
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1. Introduction 

In current situation, one of the major oilfield problems is the water inflow restriction into the wells 

draining naturally fractured reservoirs and the isolation of a high-conductivity single fracture 

connecting production and injection wells or aquifer. The instant water-cut increase in the produced 

fluid is caused by formation and injected water breakthrough via high-permeability layers and 

fractures. Under such conditions, the objective to shut-off water inflow to production wells becomes 

extremely important [1-9]. The problem is particularly acute in the case of complex fractured oil 

reservoirs. For isolation of fractures acting as the main channels of water flow and breakthrough to 

production wells, a crosslinked (mature) gel is applied. Numerous experimental studies are carried out 

to investigate the mechanism of gel propagation through the fracture and determine the rheological 

and filtration properties of crosslinked polymer compositions.  

The studies [3-6] shows that in the process of gel propagation through the fracture the gel 

dehydration, i.e., water removal, takes place. Water, separated from gel, infiltrates through the fracture 

walls into a porous matrix. Under the severe flow exposure conditions, gel concentration as well as gel 

stability increases. The gels, used for fracture water-shutoff, are crosslinked aqueous polymer 

solutions of low concentrations. According to rheological studies [7], a crosslinked gel is a non-

Newtonian fluid which apparent viscosity decreases with a shear rate increase. The rheological 

characteristics of its composition are close to the pseudoplastic fluid model. Study [8] experimentally 

proves that the gel injection into a fracture forms two flows - gel flow and formation fluid flow- 

separated by a moving interface. The gel spreads in the fracture as a piston and the gravity force does 

not affect the shape of its front. Placement of immature and mature gels and their ability to block 
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fractures during subsequent waterfloods were investigated in paper [9]. The immature gel and fully 

formed (mature) polymer gel show different behavior during placement in a fractured system, and the 

gels deposit differently in the fracture volume. Injection of different maturity gels at into a fracture 

may therefore influence the ability of gel treatment to block fractures, and hence its performance 

during conformance-control operations. At the same time, the problem of numerical modeling of non-

Newtonian agent injection into the main fracture is very important for predicting the distribution of 

final injected volumes and creating stable gel barriers. This paper describes a mathematical model of 

the main fracture water-shutoff in the porous reservoir by the crosslinked gel. The mathematical model 

is based on the fundamental laws of continuum mechanics conservation describing the flow of non-

Newtonian and Newtonian fluids separated by an interface in a flat channel with permeable walls. This 

study was targeted to optimize the design of gel placement in the fracture and to determine 

subsequently optimal technological parameters of the process and the size of a gel screens ensuring 

their stability under the excessive exposure to flow from Water-Shut-Off operations. 

 

2 Mathematical model  

Let us consider a rectangular zone in the oil reservoir of permeability k  and porosity m , where a 

vertical main fracture of length L , width fw  and height 
fh , connecting the injection and production 

wells, is symmetrically parallel to the reservoir boundaries. The relation between the width, height and 

length of the fracture can be described as Lhw ff  . The coordinate system is selected in such 

way that its origin coincides with the outer radius of the injection well and axis x  goes along the 

fracture. In the main fracture, initially filled with formation water, gel injection forms two flow 

regions separated by moving interface )(tx f
. In the first region )(0 txx f , gel density is 

g , gel 

effective viscosity is g . In the second region Lxtx f )( , formation water of constant density w  

and constant viscosity w  is displaced by gel in a piston-like manner. In the first region water 

infiltration from gel into the reservoir takes place, and in the second region - formation water losses or 

inflow, depending on the sign of pressure gradient in the direction perpendicular to the fracture walls.  

The mathematical model of gel injection into a vertical fracture with permeable walls was built on 

the following assumptions: no mixing occurs on the formation water and gel interface; water stream 

lines from fracture to reservoir are straight lines in the reservoir region under review; as per rheology, 

the crosslinked gel is a non-Newtonian pseudoplastic liquid. The fluid flow inside the reservoir is 

isothermal and follows the Darcy's law; fluids in the fracture and reservoir are incompressible; and the 

reservoir rock matrix is rigid. The mathematical model is calculated under the hydraulic 

approximation with hydrodynamic parameters - pressure and velocity - averaged over the fracture 

cross section. It is assumed, that the main fracture is flushed out by previous flows, so its boundaries 

are affected only by fluid pressure and friction (the fracture walls are free of geomechanical stress). 

 

2.1. Mass conservation equation.  

The numerical modeling of gel injection into the main fracture with permeable walls requires to write 

down the basic laws of continuum mechanics conservation (CMC) in the hydraulic approximation 

describing a viscous incompressible fluid flow in the vertical fracture with permeable walls for the 

averaged fields:  
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where   is the Coriolis correction [10].  

 Let us review a specific fluid volume V in the fracture, which is bounded by a piecewise-smooth 

surface huphdrlSS  10 , where: 10 ,SS  are inflow and outflow boundaries of the 

specific volume, respectively; rl  ,  are left and right (flow-wise) porous boundaries of the specific 
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volume; huphd  ,  are lower and upper (reservoir base and top) impermeable boundaries of the 

specific volume. All boundaries in the reviewed volume are assumed as flat.  

 To derive the integral mass conservation law for the selected specific volume V of a rectangular 

parallelepiped shape we applies the known continuum mechanics theorem about the time-derivative of 

the tensor quantities integral over a mobile volume [11]: 
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where  is fluid density; nv  is the fluid particle velocity component, normal to the cross section; mJ  

is fluid mass flow into the reservoir through fracture sidewalls; lr uu , are the rate components of the 

outflow (inflow) from (into) the reservoir, normal to the left and right fracture walls. Equation (2) 

assumes flow absence at the reservoir top and base. For the one-dimensional flow of gel in the region 

)(0 txx f  and the symmetric infiltration grl uuu   equation (2) can be written as  
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 For water infiltration from gel, the rate is determined from the experimental data [3], 

approximation of which resulted in the power law of infiltration rate vs. time with a negative 

exponent. The infiltration rate in the International System of Units is defined as:  

 

                                   
 Atug ,    

710764,1 A ,1 cm   55,0 .           (4) 

 

 The next assumption is that the crosslinked gel is a binary water solution of polymer. Then, by 

definition, the "reduced" density of polymer p  and water w  in aqueous polymer solution is:  
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where )(tM p  and )(tM w  are polymer and water masses in the gel material volume, respectively, and 

g  is gel density. The experimental data [3] show that the crosslinked gel being injected behaves like a 

"sponge", from which into the reservoir only water infiltrates while polymer retains its mass in the 

specific volume of crosslinked gel: )(tM p  = const.  

 Using the mass concentrations for the binary mixture components:  
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 The reduced water and gel density can be described as:  

 

                                                   .),(),()1( pgpgw cccccc    (7) 
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 Using the reduced water and gel densities (7), the equation of continuity (3) for gel only in the flow 

region )(0 txx f  is reduced to an equivalent system for a binary mixture:  
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where equation (8) is the continuity equation for a binary mixture (gel), and equation (9) is the 

continuity equation for the polymer component of gel.  

The application of continuity equation (2) to the specific volume, occupied by formation water in 

the flow region Lxtx f )( , leads to the equation:  
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where water incompressibility in the fracture is w  const, wu  is the rate of formation water 

infiltration through the flat channel walls.  

 The formation water infiltration rate through the fractures face is determined from the Darcy's law:  
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where k  is reservoir permeability; w  is formation water viscosity; kp  is constant pressure at the 

external reservoir boundary at distance kL  from the fracture walls.  

 

2.2. Equation of a fluid momentum conservation in a flat channel  

Given that the momentum change in the specific liquid volume equal to the sum of all external surface 

forces and mass forces [10], we have  
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where np


 tension vector on the surface   at the point with normal n


; g


 − gravitational 

acceleration.  

 The momentum equation (12) for the unsteady gel one-dimensional flow in a flat channel 

)(0 txx f  with permeable walls is reduced to a form:  
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 Similarly, given the formation water incompressibility in the formation water flow region

Lxtx f )( , the equation of motion is:  
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 In equations (13) and (14), wg  ,  are the Coriolis corrections for gel and water, wg CC ,  are 

hydraulic friction coefficients of gel and water, respectively. The viscous stress on the walls of the flat 

channel is determined by hydraulic friction coefficients.  

 

2.3. Key model equations  

The experimental data show [3] that if the initial polymer concentrations are 005.0001.0 c  then 

resulting from water infiltration from crosslinked polymer the gel concentration in aqueous solution 

can increase by an order of magnitude and achieve .05.001.0 c  The aqueous polymer solution 

density varies in the range of %. If the initial solution concentration is g 1000 kg/m3, the 

solution density upon water infiltration changes by 2010   kg/m3. Therefore, it can be estimated 

that   

                                                                       ,1

g


                  (15) 

allowing to apply an incompressible fluid approximation for describing gel injection. Thus, according 

to equation (15) for the crosslinked gel flow region )(0 txx f  in the fracture, equations (8), (9), 

(13) are reduced to the following form:  
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 For the formation water flow region Lxx f   in the fracture according to equation (15), equations 

(10) and (14) are reduced to the following form:  
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 When the crosslinked gel injecting into the fracture the regions, occupied by gel and formation 

water, change over time, which can be fully described by the law of gel - formation water interface 

movement. Therefore, the differential equation for the interface paths is defined to close the model 

using the following initial assumption at fracture inlet (walls of the injection well):  
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2.4. Closing relations, initial and boundary conditions  

The experimental studies on the crosslinked gel injection into the fracture [3-8] show that under the 

applicable gel injection rates the gel flow in fractures is generally characterized by the laminar flow 

regime.  

 To solve the gel flow equation (18), the hydraulic friction coefficient was calculated using equation 

[12]:  

                                   

n
n

g
g

n

n
C 







 
  13

2
Re

16
(Re) 3

,       KvD nn
Hg

 2Re   (22) 

 

where K is a consistency index for power fluid, )1,0(n  is the non-Newtonian degree of 

pseudoplastic fluid.  

Equation (20) is closed by defining the friction coefficient wC  for the laminar flow regime

)2000( eR  [13]: 
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 The approximate equality in equation (23) follows from the assumption that 
ff hw  . 

 In our study we assume that the production well is shut down and therefore the liquid in the main 

fracture initially is at rest, and the fracture pressure is equal to pore pressure. The initial conditions for 

the equations (16) - (21) are:  
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 Gel of initial polymer concentration 0c  is injected into the fracture at a constant rate Q . The 

boundary conditions at the main fracture entry are:  
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3. Results of numerical calculations  

For the numerical solution of equations (16) - (25) by the finite volume approach the SIMPLE 

algorithm was updated [14] to be applied to the problem of non-stationary Newtonian fluid 

displacement by non-Newtonian power fluid in a flat channel with permeable walls. The numerical 

calculations used the following Coriolis parameters 0 wg  . The results of calculations for the 

reservoir of permeability k 32.7 mD and porosity m 0.2 are shown on Figures 1-4.  

 For the numerical calculations the accepted length of main fracture is L = 300 m, and its height is 

fh 27 m. The fracture is symmetrical with respect to the boundaries of the considered rectangular 

reservoir region and the distance from the fracture walls to the reservoir boundaries is 50kL  m. 

Reservoir pressures at the boundaries of the reviewed region, left and right of the fracture, are constant 

and equal 7kp MPa. Formation water density is w 1010 kg/m3, its viscosity is taken as w

0.001 Pа·s. Gel consistency index is K 0.178, non-Newtonian exponent is n 0.72. The average 

fracture width is fw 0.005 m. The gel injection rate is Q 88.6 m3/day. The initial mass 

concentration of crosslinked polymer is 0c 0.003. 

5th International Conference on Mathematical Modeling in Physical Sciences (IC-MSquare 2016) IOP Publishing
Journal of Physics: Conference Series 738 (2016) 012102 doi:10.1088/1742-6596/738/1/012102

6



  
Fig. 1. Velocity (m/s) vs. fracture length (m) 

curves at time intervals  min. 

Fig. 2. Water infiltration velocity (m/s) vs. 

fracture length (m) at time intervals  min. 

  
Fig. 3. Pressure (atm) vs. fracture length (m) at 

time intervals  min. 

Fig. 4. Polymer concentration vs. fracture length 

(m) at time intervals  min. 

 

 Figure 1 shows the flow velocity behavior along the fracture length. In the gel flow region the rate 

is almost constant, but in the formation water region the rate drops due to its infiltration into the 

formation. The sharp bend of the velocity profile corresponds to the gel - formation water contact in 

the fracture. Figure 2 shows the rates of infiltration into formation both for water from gel and for 

formation water. Here, the shift of velocity gaps is also consistent with movement of the gel-water 

interface. It can be seen from the Figure 2 that in the process of fluid flow though the fracture the fluid 

loss velocity decreases. Figure 3 shows the profile of flow velocity vs. fracture length. At the first time 

points of the flow the pressure profile has a curved shape, but then, as gel fills the fracture, pressure 

profile is straightened and, when gel reaches the production well, it becomes almost linear. Figure 4 

shows the crosslinked polymer concentration variation in gels. This calculation gave about 10% 

difference in initial and final concentrations of the crosslinked polymer. Even so, changes in 

crosslinked polymer concentrations depends on many factors including the injection rate, initial 

polymer concentration in the aqueous solution, crosslinker concentration, and rock permeability. 

Affecting by all these factors, the change in crosslinked polymer concentration with the flow time in 

the fracture can be significant, and in this case we must take into account the effect of gel rheological 

properties on the on-going crosslinked polymer concentration. The numerical simulation for the 

above-described mathematical model allows providing optimal technological parameters for 

successful gel placement in the main fractures.  
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4. Conclusion  

We presented a mathematical model of pseudoplastic gel injection into the main fracture for the 

purpose of its isolation. The mathematical model can be easily generalized for considering the 

formation fluid and rock matrix compressibility, as well as the dependence of effective gel viscosity 

on the ongoing crosslinked polymer concentration and destruction of gel. The gel placement in the 

fracture is an important problem, based on it solutions the stability of gel barriers in the fracture can be 

solved if the limiting shear gradients are known for the applied gels.  
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