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Abstract. The following will introduce the A.I.E.S model, in which nonlinear maps determine
the evolution of an inanimate substance to form an organic substance (Biopoiesis). We will
demonstrate that when relating this model to a window of coherence that appears in the chaotic
bifurcation diagram, a biological characteristics of warm-blood animate systems appears. Our
model provides a mathematical platform in understanding Biopoiesis, that is, the process by
which living organisms develop from inanimate matter.

I. Introduction
In the book entitled, What is Life?, Nobel laureate physicist E. Schrödinger states that "life feeds
on negative entropy," namely, by the increase of order[1, 2]. Indeed, today life is still associated
with order increasing (see examples in references [3],[4]).

At first glance, it looks as though this decrease in entropy violates the second law of
thermodynamics, in which entropy always increases. However, since every living system is
attached to an external environment, we can say that this reduction in entropy is always
compensated by a growth of entropy in the attached thermal reservoir. As an example, we
can observe an evolution of DNA molecules that have been analyzed numerically using a
thermodynamic path integrals technique[5, 6]. Numeric calculations show a reduction in entropy
on the account of a solvent environment.[7].

Nobel Prize-winning chemist Ilya Prigogine[8] noticed that some shapes, such as snowflakes
(fractals in current terminology), possess natural order. Moreover, he described animate systems
that exhibit behavior of the bifurcation type, namely, oscillation between different states. These
early observations were primal clues for a generalized theory that identifies life with the evolution
of nonlinear maps, such as the cellular automaton model [9, 10, 11].

Following other works, we will describe the ordering process by nonlinear maps. We will focus
on a process in which inanimate systems, by reducing entropy, reproduce organic substance.

II. The nonlinear spanning map
Suppose we have a system evolving according to a nonlinear map. The system that is attached
to a thermal bath is at a constant temperature T , such that, like warm-blooded animals, it is not
necessarily in the reservoir temperature. Thus, our system can be out of the thermodynamical
equilibrium. Yet, the constant temperature indicates that it is in a steady state.
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We start with a 1-D system which evolves with an iterating nonlinear equation[12]

xn+1 = fR (xn) , ∀n αn ∈ [0, 1] (1)

where all values of x are within the interval [0, 1], andR is a control parameter that determines the
map type as either regular or chaotic. We assume that the R-parameter is related to temperature,
such that as R rises, so does the temperature.

If, for example, we consider the logistic map xn+1 = Rxn (1− xn), we can assume models
like R = 4

(
1− e−T/τ

)
or R = 4e−T0/T where, τ and T0 are constants characterizing the animate

system. The 4-factor is a constraint determined by the logistic map model.
For a large variety of maps, increasing the strength parameter R (associated with heating the

system from low to high temperatures) such that the map evolves from regular toward chaotic
behaviors, follows similar steps[13].
The first step (a relatively small R) is characterized by maps that converge into a single stable
point, calculated as

xn+1 = xn ≡ x[1] ⇒ x[1] = f
[1]
R

(
x[1]
)
. (2)

For a higher level of R, the map reaches two alternating values (the Andronov Hopf
bifurcation)[14], as shown in fig. 1. Yet, it is possible to redefine a map that retrieves a single

Figure 1. An example of a bifurcation diagram showing a window of coherence

stable value simply by using a double step iteration

xn+2 = f
[2]
R (xn) . (3)

where f [2]
R (xn) = fR (fR (xn)) is the map that iterates xn twice.

A steady value is then obtained when

xn+2 = xn ≡ x[2] ⇒ x[2] = f
[2]
R

(
x[2]
)

fR (fR) ≡ f [2]
R ≡ f

[1]
R ◦ f

[1]
R ,

(4)

where now the superscript [2] indicates that although the map f [2]
R retrieves a single final value,

it is composed of two basic maps.
For a higher value R, the map terminates with four alternating values that give rise to the

four-rank map f [4]
R = f

[2]
R ◦ f

[2]
R . Increasing R further, the same splitting continues until the map

reaches the chaotic regime, in which it is impossible to redefine maps that stabilize at a finite
single value.
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In general, we define f [m]
R —a map of rank m (m stands for “map”’)—as

f
[m]
R = f

[1]
R ◦ f

[1]
R ◦ ...

← m times→
=f

[m/2]
R ◦ f [m/2]

R . (5)

Although we expect a chaotic behavior at high R, the bifurcation diagram shown in fig. 1
shows a much more complex behavior than just a simple division of period multiplications
(1,2,4,...values), and chaos [15]. Amongst all the chaos, we find a stable period-3 orbit as shown
in fig. 1. More windows of 5-period and 6-period are also found. Thus, in order to redefine the
1-rank map to retrieve a single stable value, we apply the appropriate rank map such as the
3-rank map f [3]

R (xn).

III. The Animate state and the inanimate ensemble
Suppose we have a large dimensional Hilbert space spanned by a basis of states that are labeled
by the states |i〉. Among this basis of states exists a unique single state, such as a DNA molecule
or other organic substance that is associated with a single state |Ω〉. This Hilbert space can
be composed as a tensor-product of many spaces defined by different ingredients of the organic
substance. The organic substance-state |Ω〉 is defined to be unique as it defines the animate
system, like a DNA molecule. All other states are related to an inanimate ensemble of states |@Ω 〉,
defined as |@Ω 〉 =

∑
i6=Ω

ai |i〉, where the {ai}-set selections determine the ensemble. To generalize

our model further, we allow the coefficients ai to be time dependent and complex. They can also
be temperature dependent and random. Thus, except for the single organic substance state, |Ω〉,
all other complexities are introduced through the inanimate states ensemble.

Defining possible sets of the {ai} coefficients, it can be seen that ∀ {ai} 〈Ω| @Ω 〉 = 0,
meaning that there is a pronounced distinction between the two concepts, being in the ordered
organic substance state |Ω〉 rules out the possibility of being part of an inanimate ensemble and
vice-versa.

Using a Gröver-type state[16, 17], we present the A.I.E.S (Animate Inanimate Ensemble of
States) model through a state ensemble |n〉ZΩ such that

|n〉ZΩ =α[p]
n |@Ω 〉+β[p]

n |Ω〉 . (6)

The coefficients α[p]
n and β[p]

n generate the state-time evolution as determined by the nonlinear
map, where the superscript [p] is the p-rank map. The coefficient s’s subscript at |n〉ZΩ defines
each state in the ensemble through the selection of {ai}, namely, the |@Ω 〉-state.

For each |@Ω 〉, we expect the coefficients α[p]
n and β[p]

n to behave as follows:

(i) Normalization condition∣∣∣α[p]
n

∣∣∣2 +
∣∣∣β[p]

n

∣∣∣2 = 1.

(ii) Biopoiesis[18]
The process for which organic compounds, such as a DNA molecule, arise from inorganic
matter through natural processes. For a p-rank map that converges into a single value, all
states (most of them are inorganic), will line up to form the organic substance as represented
by the state state |Ω〉.

In order to fulfill these two conditions, we suggest a state of the form

|n〉ZΩ =

√
∆x

[p]
n |@Ω 〉+

√
1−∆x

[p]
n |Ω〉

∆x
[p]
n

def
= xn+p − xn.

(7)
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It is seen that for a map that converges into a single value, xn+p → xn, we find that
∀@Ω lim

n→∞
|n〉ZΩ = |Ω〉.

IV. windows of coherence-The environment for organic substance generation
Ergodicity can be related to chaotic maps[19]. The ergodic hypothesis is fundamental to the
definition of the thermodynamic equilibrium. We can therefore say that in a high temperature
range, our system tends to reach a thermodynamical equilibrium, namely to be in a chaotic state.
However, observing bifurcation diagrams for a variety of maps, we find that even with a large
R, there are narrow regimes (“windows”’) for which the map exhibits a regular behavior (see
Fig. 1).

Observing a p-rank map converging into a single value x[p], we notice that there are infinite
possibilities for selecting initial conditions for the state |n〉ZΩ. However, under the appropriate
p-rank map, it reduces to the ordered organic substance state, thereby reducing entropy. At first
glance, it looks as though this behavior violates the second law of thermodynamics. However,
since our analysis assumes the system to be attached to an external thermal bath, we can say
that this reduction in entropy is always compensated by a growth of entropy in the attached
thermal reservoir. In other words, a system based upon a window of coherence always emits heat
that is absorbed by the environment.

One cannot ignore the similarity between this high temperature windows of coherence and
warm-blooded animals systems. They both operate in a very narrow temperature spectrum
(∼ 35oC − 42oC in the human body) so as to increase order. Let us add by saying that all
of these characteristics require an “internal engine” and other temperature regulation systems
(such as sweating in the human body) to maintain this narrow temperature spectrum. When
those regulating systems stop functioning, the system temperature lines up with the environment
temperature, thereby terminating the organic substance reproducing process.

V. Discussion
We proposed the A.I.E.S model, in which an organic substance was presented by a state.
After introducing the state |n〉ZΩ, which is the organic substance state in superposition with the
inanimate ensemble of states, we introduced the state evolution as determined by a nonlinear
map. In our model, the strength parameter R was assumed to be related to the temperature of
the organic substance system. However, it possible to re transform the strength parameter R to
depend on other parameters such as the Ph- level. We showed that in an environment induced
by a window of coherence and by tracking the evolution of the nonlinear maps, the disordered
inanimate ensemble reproduces an ordered organic substance, thereby reducing entropy and
emitting heat. Such a system can survive only in a very narrow spectrum of temperatures in
which the window of coherence is defined.

Our A.I.E.S model allows the existence of many particles states even at a spectrum of high
temperatures. Thus, the A.I.E.S model can be implemented in other fields, such as quantum
computers, operating at high temperatures.

References
[1] Schrödinger E., What Is Life? (Cambridge University Press 1992).
[2] Luke A.J. O’Ne What is Life? The Next Fifty Years: Speculations on the Future of Biology, (Cambridge

University Press, 1997).
[3] Morowitz H. J., Beginnings of Cellular Life: Metabolism Recapitulates Biogenesis, (Yale University Press,

1992).
[4] http://www.panspermia.com/seconlaw.htm
[5] Joli M. , Journal of Physics: Conference Series 410, (2013) 012038
[6] Zoli M., Phys. Rev. E., 79, 041027, (2009); M. Zoli, Phys. Rev. E., 81, 05191, (2010)
[7] Joli M., J. Chem. Phys, 141, 174112 (2014)

5th International Conference on Mathematical Modeling in Physical Sciences (IC-MSquare 2016) IOP Publishing
Journal of Physics: Conference Series 738 (2016) 012092 doi:10.1088/1742-6596/738/1/012092

4



[8] Prigogine I., From Being To Becoming, New York: W. H. Freeman and Company, (1980). p 123.
[9] Wolfram S., Statistical Mechanics of Cellular Automata. Reviews of Modern Physics 55 (3), (1983).
[10] Andrew I., Cellular Automata: A Discrete Universe, (World Scientific, 2001) ISBN 9789812381835.
[11] Andrew I., Halpern P., Complex Systems, 1 (1987)
[12] Roth Y. 2015, J. Phys.: Conf. Ser 574, 012085 (2015)
[13] J. Awrejcewicz J. and Hagedorn P., Nonlinearity, Bifurcation and Chaos - Theory and Applications, ( InTech,

2012).
[14] Marsden J. E., McCracken M., The Hopf Bifurcation and its Applications, (Springer-Verlag, 1976)
[15] Gilmore R., Lefrank M., The Topology of Chaos. (New York, USA. John Wiley Sons 2002).
[16] arXiv:quant-ph/0301079
[17] Roth Y., SOP Transactions on Theoretical Physics, 1, Number 1, pp.23-26, (2014 )
[18] Lal A. K., Astrophysics and Space Science, 317 267-278 (2008)
[19] Eckmann J. P., Ruelle D., Review of Modern Physics, 57,3, (1985)

5th International Conference on Mathematical Modeling in Physical Sciences (IC-MSquare 2016) IOP Publishing
Journal of Physics: Conference Series 738 (2016) 012092 doi:10.1088/1742-6596/738/1/012092

5


