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Abstract. Applying appropriate electric pulses to a nematic liquid crystal confined between 
plates, the bulk order reconstruction can occur, a mechanism allowing the switching between 
topologically different nematic textures without any director rotation. Using a moving mesh 
finite element method we describe the order tensor dynamics for a nematic inside an 
asymmetric π-cell, putting in evidence as textural distortions induced by strong asymmetries 
can be relaxed via both bulk and surface order reconstruction, occurring close to a confining 
plate with different time duration. 

1.  Introduction 
Nematic Liquid Crystals (NLCs) confined between flat glass plates, in presence of appropriate electric 
and mechanical stresses can experience textural modifications relaxing the induced distortion [1]. In a 
similar device, the π-cell, the plates are treated in order to impose an initial orientation to the adhered 
nematic molecules, commonly known as the pre-tilt angle. The electro-optical properties of nematics 
depend on their morphology, as they are rod-like molecules exhibiting orientational order and 
cylindrical symmetry. A unit vector, the director n, accounts for the orientation of the NLC long axis, 
while the scalar order parameter S describes the degree of order along such direction, and their 
behaviour, if the applied distortions have length scales comparable to the biaxial coherence length ξb 
[2], becomes biaxial, as two distinct optical axes arise. Biaxial phenomena in NLCs have been 
extensively investigated, both experimentally and theoretically, see [3-6] and references therein, due to 
their role in the switching properties of electronic devices such as Liquid Crystal Displays (LCDs), 
which theoretical description requires the coupling of the n and S parameters within the frame of the 
Landau-de Gennes order tensor Q theory [7]. 

In fig. 1 we depict a π-cell, in which a thin film of nematic material is confined between the upper 
and lower glass plates, with pre-tilt angles θU and θL, respectively, generating a splayed texture [1], 
figure 1(a). The cell is said symmetric because θU = θL, otherwise it is asymmetric; both θU and θL are 
measured with respect to the internal face of each plate. An electric field applied perpendicularly to the 
boundary plates, cause the initial splay texture to be switched into the topological different π-bent one, 
figure 1(c), through the intermediate state of figure 1(b), where the biaxial order reconstruction take 
place in the cell centre: here, the two uniaxial textures depicted in figure 1(a) and 1(c) are connected 
through a wealth of transient biaxial states in the nanometric scale, allowing the local order of the 
nematic phase to change without any macroscopic director rotation [1]. 
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The modelling of the Q-tensor dynamics inside a π-cell containing a NLC results in a Partial 
Differential Equations (PDEs) system, solved using the Finite Element Method (FEM) implementing 
an adaptive grid numerical technique, the Moving Mesh Partial Differential Equation (MMPDE) [3-6]. 
Briefly, the domain discretization with an appropriate grid of points, typical of the FEM technique, is 
controlled according the monitor parameter ∇Q, while nodal connectivity and number of mesh points 
inside the domain are kept constant. 

 
	
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Outline of the π-cell with nematic molecules in different states: (a) horizontal alignment 
with a slight splay; (b) intermediate state, with a thin biaxial wall in the centre; (c) mostly vertical 
alignment (π-bent). 

This allows the node points on which the PDE system is solved to be clustered into regions of high 
spatial variability where more detail is required, and it results an efficient and effective numerical tool 
appropriate to model the order dynamics of NLCs confined between plates, and the dynamics of 
complex systems more in general, as biological ones [8,9]. We present a MMPDE computation of the 
biaxial order dynamics for a 5CB NLC confined in an asymmetric π-cell, focusing on the switching 
mechanisms relaxing the nematic distortion. Throughout the simulations we neglect any material flow 
effect, as we are interested only determining the order evolution within the applied electric pulse 
duration, in which the order reconstruction transition is always confined [6,10]. 

 
2.  Basic model 
We assume that inside the π-cell, the free energy functional F, because of the infinite anchoring 
energy, has contributions coming from the bulk only, which are distinguished in electric, elastic and 
thermotropic ones, respectively Fe, Fd, and Ft. The second rank order tensor Q, expressed in the 
orthonormal basis of its eigenvectors {e1, e2, e3} [7,11], describes both orientation and order of the 
NLC: the uniaxial nematic phase is characterized by the eigenvector ei=n associated to smax; when all 
the three eigenvalues are different, the calamitic molecules are in the biaxial phase, on the contrary if 
they vanish the NLCs are in the isotropic phase. Neglecting ion effects and imposing the balance 
between F and the dissipation function D, the generalized Euler-Lagrange equations are obtained for 
each of the five independent parameters qi corresponding to the degrees of freedom of a rod-like 
nematic molecule, 
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where j denotes differentiation with respect to the spatial coordinates, and summation over repeated 
indices is assumed. The electric potential U, entering in F through Fe, is governed by 
 

    ∇ ⋅ D = ∇ ⋅ −ε0ε∇U+ PS( ) = 0  (2) 

 
in which D is the displacement field, ε0 is the vacuum dielectric permeability, ε  is the dielectric tensor 
and PS is the spontaneous polarization vector. To solve the six coupled PDEs (1) and (2), due to the 
infinite anchoring energy of the nematic molecules we impose essential boundary conditions on the 
confining plates, obtaining the dynamical evolution of the system. The induced biaxial order is 
evaluated from [1] 
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where β 2 = 0 and β 2 = 1 mean, respectively, uniaxial and biaxial nematic textures. 

In one spatial dimension, we define a physical domain Ωp = [0,1] and a computational one Ωc = 
[0,1]; then we denote a PDEs solution over the physical domain Ωp = [0,1] as u(z,t), z ∈ Ωp, while if ξ 
∈ Ωc is a computational coordinate, we define a coordinate transformation from Ωp × (0,T] to Ωc × 
(0,T] as ξ = ξ(z,t), and the reverse z = z(ξ,t) holds. The integration domain is discretized with a fixed 
number of grid points, and the definition of the monitor function is based on a method proposed by 
Huang et al. [12], which ensures a good quality control of the meshes and final convergence of the 
FEM solution [13,14] 
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The equidistribution of (4) [13,15] in each subinterval of the integration domain gives the mesh 
equation 
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and since at a larger monitor function value corresponds a denser mesh, a mesh map control with 
improved resolution is obtained.  

Full details about the used multipass algorithm, numerical procedure and settings can be found in 
[3-6], we remark only that to solve (1) and (2) we replace the unknown u(z,t) in (4), with tr(Q2), a 
quantity which is rapidly varying when the degree of order is not constant; the physical domain has 
been discretized with a mesh of 285 grid points using the physical parameters typical for 5CB nematic 
liquid crystal at ΔT=-1°C [16]. We modelled a one-dimensional asymmetric π-cell of thickness 1µm, 
to which a rectangular electric pulse is applied perpendicularly to the plates at t=0 s for a duration Δt 
= 0.25 ms, sampling the dynamical evolution of the Q tensor with a time step size δt= 0.1 µs. 



 
 

3.  Results and discussion 
Recently we have shown [17], both experimentally and numerically, that applying an electric pulse to 
a 5CB NLC confined in an asymmetric π-cell, the arising distortion is relaxed through an increasing 
biaxial order close to the boundary plate where the anchoring angle is smaller, and to solve the PDEs 
system arising from the problem modelling we used the FEM based on a uniform discretization of the 
integration domain. In the present simulation, instead, we solve the PDEs system using the MMPDE 
technique to show as, enhancing the nematic frustration, a better resolution puts in evidence the 
relaxation mechanism observed close the boundary plates. In figure 2 we show the biaxiality maps 
obtained with θL =19° and θU  = -3°, for amplitudes of the applied pulse of, respectively, 15 V/µm (a), 
22 V/µm (b), 25 V/µm (c) and 40 V/µm (d), linearly mapped in a grey levels scale between the black 
(zero biaxiality) and the white (maximum biaxiality) colours. The vertical axis corresponds to the cell 
thickness, while in the horizontal one is represented the solution evolution in the 0 ms ≤ t ≤ 0.1 ms 
interval, in logarithmic scale for plotting convenience. In each panel of the figure, the inset shows the 
magnification, not spatially scaled, of the biaxiality within 15 nm under the upper boundary plate. At t 
= 0 s, whatever the amplitude of the applied field is, close to the upper surface the nematic molecules  
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Figure 2.  Surface contour plots of the biaxial order evolution for θL =19°, θU =-3°, and electric pulse 
amplitudes of 15 V/µm (a), 22 V/µm (b), 25 V/µm (c) and 40 V/µm (d). The insets show the 
magnification of the biaxiality, not spatially scaled, within 15 nm under the upper boundary plate. 

stay almost planar to the plate, while the bulk nematic texture has an asymmetric splayed 
configuration compatible with the prescribed boundary conditions. Applying a pulse of amplitude 15 
V/µm, figure 2(a), for t > 0 s the director starts to align along the field direction, while a biaxial region 
of thickness about 20 nm, hence comparable with ξb, connects the quasi-planar nematic texture lying 



 
 

close to the upper surface, to the vertical nematic molecules located in the bulk: the nematic distortion 
tends towards the upper boundary plate where it relaxes by lowering the nematic order [3,17], and the 
starting uniaxial phase is locally replaced by growing biaxial domains. Just underneath the upper 
surface a bulk order reconstruction occurs around t = 10 µs, characterized by the ring-like biaxial 
region surrounding a planar uniaxial state [1]; for t > 10 µs the initial splayed texture is replaced by a 
bend one, and a uniaxial order is restored everywhere except for the biaxiality growing close to the 
boundary surfaces, due to the anchoring conditions imposed: near the upper surface, in particular, the 
competition between the molecules lying in a quasi planar configuration and the nematic texture 
aligned vertically along the field direction induces a strong distortion which is relaxed by a growing 
biaxial wall [17], see the inset of figure 2(a). Increasing the pulse amplitude, it is well known that the 
biaxial structures become faster [5], and at the same time the bulk order reconstruction spreads 
progressively along the cell thickness, losing its cylindrical symmetry [6]: in the present case, as the 
competition between the quasi planar texture and the vertical one becomes stronger close to the upper 
boundary plate, inside the surface biaxial wall an order reconstruction transition occurs, lasting for the 
whole pulse duration, see the inset of figures 2(b)-2(d), concurring together the bulk order 
reconstruction transition to the relaxation of the textural distortion [18]. 

 
4.  Conclusions 
Our MMPDE simulations are consistent with previous computations and suggest that, although with 
different temporal durations, surface and bulk order reconstruction transitions cooperate to relax the 
textural distortions induced in frustrated NLCs confined in a π-cell with strong asymmetries as well as 
strong electric distortions. The afforded problem involves characteristic lengths and times with large-
scale differences, and although it is simplified and in one space dimension, it is a useful model 
representative of higher-dimensional real problems, confirming the validity of our numerical method 
also in simulating markedly distorted physical systems as in the present case. 
 
References 
[1] Barberi R, Ciuchi F, Durand G, Iovane M, Sikharulidze D, Sonnet A and Virga E G 2004 Eur. 

Phys. J. E 13 61–71 
[2] Biscari P and Cesana P 2007 Contin. Mech. Thermodyn. 19 285–98 
[3] Amoddeo A, Barberi R and Lombardo G 2012 Phys. Rev. E 85 061705–10 
[4] Amoddeo A, Barberi R and Lombardo G 2010 Comput. Math. Appl. 60 2239–52 
[5] Amoddeo A, Barberi R and Lombardo G 2011 Liq. Cryst. 38 93–103 
[6] Amoddeo A, Barberi R and Lombardo G 2013 Liq. Cryst. 40 799–809 
[7] de Gennes P G and Prost J 1993 The Physics of Liquid Crystals (Oxford: Clarendon Press) 
[8] Amoddeo A 2015 Comput. Math. Appl. 69 610–9 
[9] Amoddeo A 2015 Cogent Physics 2 1050080 
[10] Brimicombe P D and Raynes E P 2005 Liq. Cryst. 32 1273–83 
[11] Virga E G 1994 Variational Theories for Liquid Crystals (London: Chapman and Hall) 
[12] Huang W, Ren Y and Russell R D 1994 SIAM J. Numer. Anal. 31 709–30 
[13] Beckett G, Mackenzie J A, Ramage A and Sloan D M 2001 J. Comput. Phys. 167 372–92 
[14] Beckett G and Mackenzie J A 2000 Appl. Numer. Math. 35 87–109 
[15] de Boor C 1974 Good approximation by splines with variable knots II Conf. on the Numerical 

Solution of Differential Equations (Dundee, UK, 1973) (Lecture Notes in Mathematics vol 
363) ed G A Watson (Berlin: Springer-Verlag) pp 12–20 

[16] Ratna B R and Shashidhar R 1977 Mol. Cryst. Liq. Cryst. 42 113–25 
[17] Lombardo G, Amoddeo A, Hamdi R, Ayeb H and Barberi R 2012 Eur. Phys. J. E 35 9711–16 
[18] Amoddeo A 2015 Journal of Physics: Conference Series 574 012102  

 


