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Abstract. The global incidences of dengue and, more recently, zica virus have increased the
interest in studying and understanding the mosquito population dynamics. Understanding
this dynamics is important for public health in countries where climatic and environmental
conditions are favorable for the propagation of these diseases. This work is based on the study
of nonlinear mathematical models dealing with the life cycle of the dengue mosquito using
partial differential equations. We investigate the existence of traveling wave solutions using
semi-analytical method combining dynamical systems techniques and numerical integration.
Obtained solutions are validated through numerical simulations using finite difference schemes.

1. Introduction

There is a renewed interest in controlling the proliferation of Aedes aegypti mosquito, which
is the transmitter of Dengue virus, and more recently Chikungynya and Zika viruses, [1]. In
order to minimize both social and economic costs, [2] analyze the Dengue vector control problem
in a multi-objective optimization approach using a dynamic mathematical model representing
the mosquitoes’ population. There are several modeling approaches appearing in the study
of biological invasions and spread of diseases. In [3, 4], the authors study spacial population
dynamics of Aedes aegypti using partial differential equations (PDEs) describes the life cycle of
the mosquito Aedes aegypti. In [5] was studied nonlinear modification of this model considering
different diffusion (dispersion) and advection (wind) effects. We follow the same approach here
using techniques presented in [6] applied to generalized non-linear problem.

The paper is organized as follows. Section 2 presents the mathematical model. Section 3
discusses the existence of the solution for this model in a form of traveling wave. In Section 4 we
apply the algorithm and validate the results comparing them to the direct numerical simulation
obtained by using Finite Difference Scheme. The final conclusions are presented in Section 5.

2. Mathematical model

We consider one-dimensional model from [5] considering p = 0 and ¢ = 1. To simplify the
vital biological dynamics of mosquito, the model considers only two subpopulations: (1) eggs,
larvae and pupae compose aquatic immobile phase (A(z,t)) and (2) female mosquitoes compose
winged mobile phase (M (x,t)). The dimensional form of the model is

{ M; =D Mgy —20M [ky My +5A(1 — M /ky) — ju M,

Ay =7(1 - Afks)M — (2 + 9)A, ()
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where M is the winged phase population, A is the aquatic phase population, D is the diffusion
term, 7 is the advection term, fi; is the mortality rate (i = 1 winged phase; i = 2 aquatic phase),
k; is the carrying capacity of each phase, 7 is the specific rate of maturation of the aquatic
phase into winged phase and 7 is the oviposition rate of the female mosquitoes. Following [3],
the model can be written in dimensionless form:
{ My, = My, —2vMM, +~vA(1 - M)/k — u1 M, )
A = k(1= A)M — (2 +7)A,

where the partial derivatives in M are denoted as OM/dx; = M,,, same for A.

3. Traveling wave solution

In this section we investigate whether System (2) possesses a traveling wave solution, following
the same steps of [6]. We change coordinates from (z,t) to (,t), where £ = x — ct is called
as traveling variable with constant propagation speed c. Following [7] we look for stationary
solution in variable () as M (x,t) = m(&) and A(x,t) = a(€), where m(&) and a(§) correspond
to wave profiles of winged and aquatic mosquitoes population densities, respectively. Performing
traveling coordinates substitution, we rewrite System (2) as a system of ODEs:

m'(§) = h(§)
W (§) (2vm(§) — )h(§) + (k1 +va(§)/k)m(E) — ya(§)/k 3)
a'(§) = k(a(§) —1m(&)/c+ (p2 +v)a(§)/c,

where prime indicates derivative in £. Solving the system (m/,h’,a’) = (0,0,0), we find two
stationary solutions (also called equilibria) of System (3)

k(~ — — —
(v —mp =) Y ke ) @

v(k + p2 +7) v+ kp

Here A represents the lack of both populations and B represents the maximum population in
both phases.

The main goal consists in studying the existence of the traveling wave solution of System (3)
in the form of heteroclinic orbit connecting equilibria A to B (or B to A) in the following sense.
The propagating profile corresponds to the solution connecting the region with no mosquitoes
upstream the wave (¢ — —o0) to the region with mosquitoes downstream the wave (§ — 00):

ggl_noo(m(g)?h(g)va(f)) = (07070) and gETm(m(g)’h(@’a(S)) = (m*707a*)7 (5)

A =(0,0,0), B=(m*,0,a"), where a* =

where h — 0 because m converges to constant state. The other case is analogous. In both cases
constants m* and a* are given in Eq. (4). The matrices of derivatives of the flux in System (3)
at equilibria A and B are

0 1 0 0 1 0

2 g x Y *
JA)=| M ¢ % . J(B) = M1+Ea 2v(m*) — ¢ E(m -1) . (6)
kg ety Far =1 0 km” + p2 £y
c c c c

4. Numerical results

In this section we study numerically PDE System (1) and compare is with ODE System (3)
using the algorithm de [6]. Both studies use same parameter values found in the literature.
Dimensional parameter values are, [3], D = 1.25 x 1072, 7 = 5.0 x 1072, 4 = 0.2, ¥ = 30,
k1 = 25, ks = 100, i = 4.0 x 1072 i3 = 1.0 x 1072, where space (Z) is measured in km and
time () in days. Dimensionless parameter values are, [3], v = 8.164 x 1072, v = 6.66 x 1073,
E=25x10"1, g =1.33 x 1073, po = 3.33 x 10~
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4.1. Direct numerical simulation

System (1) is solved numerically using Crank-Nicolson finite difference scheme. We set initial
data for the variables M and A at time ¢t = 0 as My = 10 and Ay = 50. Dirichlet boundary
conditions are considered for both left and right sides. Applying numerical scheme we obtain
the solution of System (1) for times ¢t = 0, 3, 6, 9, 15 (days), see Fig. 1. This figure shows
evidence that the solution of System (1) contains two traveling waves propagating forward and
backward. From the biological point of view these results indicate the invasion phenomena in
the population dynamics of Aedes aegypti with one profile propagating along the flow (from left
to right with speed Cy = 0.2776 km/day and dimensionless speed ¢,; = 0.4534) and another
profile propagating against the flow (from right to left with speed C,y = —0.2775km/day and
dimensionless speed cqq = —0.4531). This observation motivates the rigorous search for traveling
wave solutions.

Numerical simulation
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Figure 1. Numerical solution of System (1)
for times t = 0, 3, 6, 9, 15 days, using the
dimensional parameter values.

4.2. Semi-analytical method: invasion against the flow

In this section we follow the steps of the semi-analytical method described in [6] in order to verify
the existence of the traveling wave solution of System (3), i.e., the heteroclinic orbit connecting
equilibrium A to equilibrium B (boundary conditions given by Eq. (5)). The algorithm for the
orbit connecting B to A is analogous. We consider dimensionless parameter values given in
Section 4 (introduction) with ¢,y = —0.4531 obtained in the numerical simulation.

(i) Equilibria solutions of System (3) are A = (0,0,0) and B = (0.951, 0, 0.971) with
corresponding matrices of derivatives given by J(A) and J(B), Eq. (6).

(ii) e J(A) possesses two eigenvalues with positive real part: A\; = 0.1999 and Ay = 0.4743,
with corresponding eigenvectors w; and wy. These eigenvectors define the unstable
subspace E'{ which approaches locally the unstable manifold W};

e J(B) possesses two eigenvalues with negative real part: A3 = —0.0467 and Ay =
—0.5403, with corresponding eigenvectors ws and wy. These eigenvectors define the
stable subspace E which approaches locally the stable manifold W3.

(iii) Using point C' = (A + B)/2 and the vector N = C@, we defined the Poincaré plane 7.
The plane 7 intersects both stable and unstable manifolds transversally, see Fig. 2, because
¢(C) - N # 0, where ((m,h,a) = (m/,h',a’) is given by Eq. (3).

(iv) Numerical integration starts at circles contained in E% and E} centered at equilibria A
and B, respectively. The intersection sets between integration curves and 7 are denoted by
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Pj and Pp. The lines P} and Pg intersect on the Poincaré plane at point P§ N Pp = P,
see Fig. 3. This ensures the existence of the heteroclinic orbit connecting equilibrium A to

equilibrium B.
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Figure 3. Poincaré plane
7 from Fig. 2 indicating the
intersection sets Py (P} =~
W4 nnm) and Pj (P =~
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the intersection between both
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(v) In order to validate the proposed semi-analytical method we compare the solution profile
obtained by the proposed method with the one from direct numerical simulation for the
winged phase and aquatic phase, see Figs. 4 and 5. The small numerical difference between
profiles observed on Figs. 4 and 5 are due to diffusion effect of the numerical scheme and
the radius of the small circles used for starting the integration.

5. Conclusions

In this work we complete the results presented in [5] showing that both waves appearing in the
numerical simulation are traveling waves. Our semi-analytical method verified the existence of
traveling wave profiles appearing in the system describing population dynamics of Aedes aegypti
mosquitoes. The results were validated through numerical simulations.
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