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Abstract. The n -vicinities method for approximate calculations of the partition function of a 

spin system was proposed previously. The equation of state was obtained in the most general 

form. In the present publication these results are adapted to the Ising model on the D -

dimensional cubic lattice. The state equation is solved for an arbitrary dimension D and the 

behavior of the free energy is analyzed. For large values of D  ( 2D  ) the obtained results are 

in good agreement with the ones obtained by means of computer simulations. For small values 

of D , there are noticeable discrepancies with the exact results. 

1.  Introduction 

In the papers [1]-[3] we develop the n -vicinities method for approximate calculation of the partition 

function. The method can be described as follows. Let 1N   be the dimension of the problem, and 

0

Ns R  be the initial configuration whose n -vicinity n  is the set of all the configurations that differ 

from 0s  by the values of n  coordinates ( 0,1,...,n N ). The distribution of the energies of the states 

from n  fits the Gaussian density reasonable well [3]. The mean energy nE  and the variance 2

n  can 

be accurately expressed in terms of the parameters of the connection matrix [1], [2]. Then in the 

asymptotic limit summing over the states from n  in the expression for the partition function can be 

replaced by integration of exp( )E  over the Gaussian measure, and summing over the all n-

vicinities by integration between 0 and 1 over the parameter /x n N . As a result the partition 

function takes the form of the integral  exp ( , )NZ dx dE N F x E    ,  which is calculated with the 

aid of the saddle-point method. The function of two variables ( , )F x E  depends on the following 

parameters: the inverse temperature  , the external magnetic field (if it is present), the trace of the 

connection matrix squared and some other numerical parameters. That is ( , ) ( , , , ...)F x E F x E H . In 

the most general form the expression for ( , )F x E  was obtained in [2], [3]. In the present publication 

we adapt this expression for the Ising model on the D -dimension hypercube, derive the equation of 

state, plot and examine the graphs of the free energy. Because of the size of the publication here is 

only the summary of our calculations. The details will be presented in [4]. 

2.  Basic Expressions 
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Let  
1

N

ijTT  be the connection matrix corresponding to the D -dimensional Ising model, 

0 (1,1,...,1) N s R  is the ground state of the spin system, 
x  is the x -vicinity of the ground state, 

where / [0,1]x n N  . Let us calculate the energy per one spin: if 
xs , and H  is the value of the 

homogeneous magnetic field, then 

1 1
( , ) ( ) (1 2 )ij i j iij i

E H T s s H s E H x
N N

      s s . 

By 
0E  we denote the energy of the ground state: 0 0

1
( ) 2ijij

E E T D
N

    s . Then the 

asymptotic expression for the energy averaged over 
x  is 2

0 (1 2 )xE E x  , and the variance is equal 

to 

2

2 2 2

2

32
(1 )

ijij

x

T
x x

N
  


. In [1]-[3] it was shown that the expression for the partition function can 

be reduced to the form:  
0

0

1

0

~ exp ( , )

E

N

E

Z dx N F x E dE   , where 1N  ,  

 
2

1
( , ) ( ) (1 2 )

2

x

x

E E
F x E L x E H x



 
       

 
, 

and ( ) ln (1 )ln(1 )L x x x x x    . 

To find the global minimum of the function ( , )F x E  it is necessary to solve the set of equations: 

2
0, ln 2 0

1

x x x

x x x

E E E E E EF F x
H

E x x x
 

  

     
       

     
. 

Solving the first equation for   and substituting the result into the second one, we obtain the 

minimization problem for the function of one variable 
2 2

( ) ( ) (1 2 )
2

x
xf x L x E H x

 
       

restricted to the inequality 0

2
0x

x

E E





  . The restriction means that among all the minimums we 

examine only those for which 0
F

E





. We use the other normalization and more convenient notations:  

2

2
ijij

ijij

T
b

T
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
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2
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ijij
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Then the final form of the problem is as follows: for each value of the “renormalized” inverse 

temperature b  we have to find the global minimum of the function 

2 2( ) ( ) (1 2 ) 8 ( (1 )) (1 2 )
2

b
f x L x x b x x h x


            (1) 

at the interval (0, )bx , where  

1
, when 1

2

1 1 1/
, when 1

2

b

b

x
b

b




 
  



.     (2) 

When b exceeds 1, the right-hand boundary of the interval where we are looking for the global 

minimum becomes depending on b.   

The free energy is equal to
(0, )

( ) min ( )
bx x

f b f x


 . 
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Note.  For the D -dimensional Ising model with the connection J  between the nearest neighbors 

we have: 2ijij
T DNJ , 2 22ijij

T DNJ , 2b J , 2D  , / (2 )h H DJ . Here the 

characteristic   is equal to the number of the nearest neighbors of each spin. However, generally the 

interactions along the different directions of the lattice can be different. In this case   is no longer an 

integer. For example, for the two-dimensional Ising model with different interaction constants along 

the horizontal ( J ) and vertical directions ( K ) we have 
2

2 1
/ /K J J K


 

  
 

. Then   can takes 

any value from the interval 2 4  . Similarly, for the three-dimensional Ising model with different 

interaction constants ( , ,J K L ),   can takes any value from the interval 2 6  . In the general case, 

  is the effective coordination number that describes the interaction of the spin with the nearest 

vicinity. 

3.  Analysis of the state equation when H=0 

Let us set 0H  . The case of the nonzero magnetic field will be described in [4]. We seek the global 

minimum of the function ( )f x  (1) with 0h  . For that we have to solve the state equation 

 
( )

ln 2 (1 2 ) 1 4 (1 ) 0
1

f x x
b x bx x

x x



     

 
.     (3) 

It is evident that 0 0.5x   is the solution of this equation for any values of b  and  . 
0x  is called the 

trivial solution. For very small values of b ( ~ 0b ) the function ( )f x  decreases monotonically from 

(0) / 2f b   up to 2

0( ) ln2 / 4f x b    (see figure 1a). Consequently, for small b  the trivial 

solution 0x  is the only solution of equation (3), and the free energy takes the form 
2

( ) min ( ) ln2 , ~ 0
4x

b
f b f x b


    .    (4) 

The interval 16 / 3  . It can be shown [4] that for   from this interval the point
0x remains the only 

solution of equation (3) until b  is less than the critical value 

1 1 4 /

2
cb

 
 .      (5)  

When cb b , the free energy has the form (4). Once b exceeds the value cb , 
0x becomes the 

maximum point of the function ( )f x . To the left from 0x appears another minimum point 1( )x b : 

1 0( )x b x  (see figure 1b). In this case, to calculate the free energy one has to substitute 1( )x b  in 

equation (1). When cb b  the phase transition of the second kind takes place in the system.  

A further increase of the parameter b  is accompanied by the deepening of the minimum and steady 

shifting of the minimum point towards 0.  When b  becomes larger than 1, the right boundary of the 

interval becomes the variable that is equal to bx  (see equation (2)). When b  the interval (0, )bx  

contracts to the origin of coordinates and the global minimum 1( )x b  tends to zero. As it has to be, 

when the temperature tends to zero, the spin system tends to its ground state 0 (1,1,...,1)s .  

Let us substitute the values 6, 8,10,12,14   into equation (5) and calculate the critical values of 

the inverse temperature for the 3D-, 4D-, 5D-, 6D- and 7D- Ising models, respectively. The obtained 

Table 1. Theoretical and experimental values of cb  for D-dimensional Ising models 

 3D 4D 5D 6D 7D 

Our theory 0.2113 0.1464 0.1127 0.0918 0.0774 

Computer 

simulations 
0.2216 0.1489 0.1139 0.0923 0.0777 
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numbers are shown in the upper row of the table 1. In the lower row we present the values of 
cb  that 

are the results of computer simulations (see [5]-[7]). We see a good agreement between our theoretical 

estimates and the results of computer simulations.  

Thus, equation (5) provides us with a reasonable estimate of the critical temperature for the Ising 

model on the D-dimension hypercube when 8 / 3D  .  We would like to remind that the parameter   

has not to be even integer-valued numbers (see the note in the end of the previous section). 

 

Figure 1. The behaviour of the function ( )f x  for different values of   and b  (see the body of the text). 

When 16 / 3  , with increase of the parameter b  the behavior of the function ( )f x  changes. 

Namely, now it certainly has a minimum in the inner point ( )inx b  of the interval 0(0, )x . The depth of 

this minimum has to be compared with 0( )f x . Different situations are possible depending on whether 

  is less or larger than 2.75. 

The interval 2.75   (figure 1c). It turns out that in this case the local minimum in the point inx  

is never deeper than the minimum in the point 0x  [4]. Then as long as 1b   the global minimum of the 

function ( )f x  is in the point 0x . When the value of b  becomes larger than 1 and the right boundary 

bx  becomes depending on b , and the global minimum of the function ( )f x  is in the point bx : 

 

2

ln 2 , 1
4( )

( ) 2 1 , 1
4

b

b
b

f b

L x b b






  

 
   


.      (6) 

During the further increase of b (b ) the global minimum is either in the point bx  or it jumps 

to the point of the current minimum ( )inx b . The last happens if for a value of b  the minimum ( )bf x  
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becomes equal to ( )inf x . In any case, when b  grows indefinitely, the minimum point tends to 0 and 

the system tends to the ground state. 

Note, when 1b   there is a discontinuous of the first derivative of the free energy (6): 

1 0 / 2b bf  
    and 1 0 (1 ) / 2b bf  

   , which demonstrates the presence of the phase transition of 

the first kind. This is true for any 2.75  , in particular for 2   that corresponds to the 1D Ising 

model. In the same time, the exact solution for the one-dimension Ising model does not show phase 

transitions for finite temperatures [8]. We have to admit that in the region 2.75   our method 

provides questionable results. 

The interval 2.75 16 / 3   (figure 1d). In this case, for a value of  b  the inner local minimum 

( )inx b  becomes necessarily equal to the minimum in the point 0x  [4]. It takes place when jb b  and 

by ( )j in jx x b  we denote the corresponding value of x . For jb b  the global minimum jumps from 

the point 0x  to the point jx . The magnetization of the system changes in a step-wise way from 0 0m   

to 1 2j jm x  , indicating the phase transition of the first kind. With further increase of b ( b ) the 

minimum point ( )inx b  tends to 0 steadily and the system tends to its ground state.  

The value 4   that corresponds to the 2D Ising mode belongs to the interval in question: 

[2.75,16 / 3]  . From our approach it follows that in the 2D Ising system the phase transition of the 

first kind occurs when 0.3912cb  . In the same time, the exact solution of  Onsager shows the phase 

transition of the second kind for the noticeably larger value 0.4407cb   [8]. When 2.75 16 / 3   

the results of our method are also questionable. 

4.  Discussion and conclusions 

Let us illustrate the above statements by some computer calculations. In figure 2 for different values of 

  the dependences of the magnetization 1 2m x   on the renormalized inverse temperature b  are 

shown. At first when b  is not too large, the global minimum is in the point 0 0.5x  , and the 

magnetization of the state is equal to zero. When the parameter b  reaches the critical value the global 

minimum leaves the point
0x and from this moment the magnetization is a nonzero one. For 6   it 

happens when cb b  and after that the magnetization varies smoothly, without discontinuities. For 

other values of   it happens when jb b  and at that the global minimum jumps from the point 
0x  

into the point jx  (see above). For 16 / 3   the jump of the magnetization 1 2 jm x   is clearly seen 

in figure 2. 

The value of the mean energy ( )exp( ( ))E E E   s
s s  behaves itself in the same way. The 

cumbersome calculations of this characteristic will be also presented in [4]. In Fig.3 for different 

values of  the dependences of the renormalized mean energy 0/E E E   as functions of b  are 

shown. At first E  is linear in b ; when b  becomes larger than the critical value, the behavior of E  

changes. When 6  , the function ( )E b  is a continuous function that decreases up to 1 . 

When [2.75,16 / 3]   the value of E has a jump in the critical point. After that the system tends to the 

ground state. The jump manifests the presence of the gap in the distribution of the energies of states. 

However, we have no arguments why there is the energy gap when 16 / 3  , and it is absent when 

6  .  

5th International Conference on Mathematical Modeling in Physical Sciences (IC-MSquare 2016) IOP Publishing
Journal of Physics: Conference Series 738 (2016) 012064 doi:10.1088/1742-6596/738/1/012064

5



 

 

 

 

 

 

  

0.00

0.25

0.50

0.75

1.00

0.0 0.2 0.4 0.6 0.8

 6
 5

 4
 53.  3

 m

 b

 

 

 

Figure 2. Magnetization m  as function of b  

for different values of  . 
 Figure 3. Renormalized mean energy E  as 

function of b  for different values of  . 

The essential fault of our approach is the presence of the jump of the magnetization in the 2D Ising 

model. This error is the result of distortions due to the approximation of the true distribution of 

energies by the Gaussian density. Without getting into details, let us note that analyzing the equation 

of state we see how a small distortion of the curve’s shape allows to eliminate the unnecessary jump of 

the magnetization. We hope that this can be done by an improvement of our model. For example, a 

more accurate approximation can be used in place of the Gaussian density. This is the subject of our 

further analysis. Even in the present form when we ignore the jumps of the magnetization and are 

interested in the behavior of the free energy only, the results obtained with the aid of our approach are 

reasonable enough.  

In figure 4 for the 2D Ising model we show the dependence of the inverse critical temperature c  

on the ratio of the interaction constants along the two axes: 1J   and K  varies from 0.2 to 1. We see 

that our results are in sufficiently good agreement with the exact solution. 

 

Figure 4. 2D Ising model ( 4  ). Dependence of the critical temperature on K: solid line is the 

Onsager theory, circles is our results. 

In figure 5 the graphs of the free energy for different values of K  are shown. The solid line is the 

free energy ( )exf   calculated according the Onsager theory, the circles are the results of our approach 

( )appf  . It is clearly seen that the difference between our results and the exact theory are noticeable 
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only in the region near the critical temperature 
c . To make this statement more evident, in figure 6 

we present the graphs of the relative error  ( ) ( ) / ( )app ex exf f f   . Its maximal value corresponds 

to the critical temperature 
c  and it is of the order of 1%. 

Let us summarize. For cubic lattices of high dimensions ( 16 / 3  ) our theory is in good 

agreement with the well-known results. There are no exact results for the high dimensional Ising 

models ( 2D  ). For these dimensions our approach, as well as the computer simulations, predicts the 

phase transition of the second kind. The experimental values of the critical temperatures for a rather 

long sequence of the values of   coincide sufficiently accurately with the ones obtained with the aid 

of our formula (5) – see table 1. 

When 16 / 3   our theory is not sufficiently accurate. The most important fault is the presence of 

the phase transition of the first kind in the cases where there are no phase transitions at all ( 2  ), or 

the phase transition has to be of the second kind ( 4  ). The aim of our further analysis is to correct 

this defect.  
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Figure 5. 2D Ising model ( 4  ). Free energy 

( )f   for 0.2, 0.5, 0.7, 1.0K  : solid lines are 

the Onsager theory, circles are our results. 

 

Figure 6. 2D Ising model ( 4  ). Relative 

errors as functions of   for 

1, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3K    

(from left to right). 
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