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Abstract. The main goal of this work is to add and analyze an equation that represents the
volume in a dynamical model of the mammalian cell cycle proposed by Gérard and Goldbeter
(2011) [1]. The cell division occurs when the cyclinB/Cdk1 complex is totally degraded (Tyson
and Novak, 2011)[2] and it reaches a minimum value. At this point, the cell is divided into
two newborn daughter cells and each one will contain the half of the cytoplasmic content of the
mother cell. The equations of our base model are only valid if the cell volume, where the reactions
occur, is constant. Whether the cell volume is not constant, that is, the rate of change of its
volume with respect to time is explicitly taken into account in the mathematical model, then the
equations of the original model are no longer valid. Therefore, every equations were modified
from the mass conservation principle for considering a volume that changes with time. Through
this approach, the cell volume affects all model variables. Two different dynamic simulation
methods were accomplished: deterministic and stochastic. In the stochastic simulation, the
volume affects every model’s parameters which have molar unit, whereas in the deterministic one,
it is incorporated into the differential equations. In deterministic simulation, the biochemical
species may be in concentration units, while in stochastic simulation such species must be
converted to number of molecules which are directly proportional to the cell volume. In an
effort to understand the influence of the new equation a stability analysis was performed. This
elucidates how the growth factor impacts the stability of the model’s limit cycles. In conclusion,
a more precise model, in comparison to the base model, was created for the cell cycle as it now
takes into consideration the cell volume variation

1. Introduction
There is an increasing interest in modeling the cell cycle, specially the mammalian cell cycle.
This may be explained as some diseases, like the cancer, or even the aging process are directly
related to the cell cycle. Thus, understanding the cell cycle and how it is affected by those
problems is essential for proposing new treatments. On that account, several models for the
cell cycle were proposed. There are, for instance, models from a simple yeast cell to a complex
human cell. There are mainly two methods of simulation, the ordinary deterministic and the
stochastic. The deterministic method simulates the average concentration, which is in a large
system precise and simple. On the other hand, a stochastic method simulates each reaction
individually, following the probability of each reaction occurs. This is computationally more
expensive, but can capture the stochastic noise that in small systems, like a cell, may lead to a
different result in relation to the average.
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This work proposes an improvement for the model of the mammalian cell cycle proposed by
[1, 3], to explicitly take in account the cell volume variation. This new model is then analyzed
in order to verify how the volume variation affects the dynamics of the differential equations.
Finally, the model is simulated using a deterministic and a stochastic method.

2. Proposed Model
This work develops an extension for the model proposed by [1]. The original model is composed
by a set of differential equations (1-6). However, those equations do not contain any information
related to the cell volume. In an effort to improve the model’s completeness, information about
how the cell volume changes along the cell cycle will be added.
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As we are working with concentrations (µML ), the Equations (1-6) are only valid when the
cell volume is constant. So, when the cell volume is not constant, these equations are no longer
valid. However, these equations were developed from the mass conservation principle, therefore,
it is the mass that is conserved not the concentration. Let Ne be the equivalent of Me in moles
[M ] and V the cell volume [L]. Now, the Equation (3) can be rewrite as in Equation (7), having
Me · V = Ne.

As the cell volume is not constant, the product rule must be applied on the left side of the
Equation (7). The equation is then divided by V and the original term dMe

dt is isolated on the
left side, resulting in the Equation (8).

It is reasonable to suppose that a cell growth is proportional to its volume, following an
exponential growth during an active cell cycle [4]. Thus, the cell volume may be represented by
the Equation (9).

Using this expression (Eq. 9) for dV
dt in the equation (8) results in a simpler equation (10).

This equation now takes into account the cell volume variation, and the term −µMe is called
dilution factor due the cell growth. The same procedure can be applied to each equation of
the original model, resulting in a new set o differential equation composed by the transformed
equations in addition to the volume differential equation (9). The cell division is done when the
cyclinB/Cdk1 complex is totally degraded, like the work presented by [2]. At this moment the
volume V is cut by half. In the stochastic version, the amount of molecules of each chemical is
also reduced to its half.
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2.1. Stochastic
As cells are small, the stochasticity may impact the behavior of the system [5]. Thence, a
stochastic version of this model is also proposed. To do so, each variable and parameter having
a concentration unit (µML ) must be converted to number of molecules. This number is directly
proportional to the cell volume. This conversion is done by multiplying the value in concentration
unit by a factor of Ω = Vc ·NA ·10−6, where Vc is the cell volume in liters (L), NA is the Avogadro

constant and the 10−6 factor is to convert the parameters unit from µM
L to M

L [6].
In order to model the system as a stochastic process, each differential equation has to be

separated in two [4]. The first one represents the activation a new molecule, while the second
represents the deactivation of a molecule. The stochastic model is represented in the Table (1).
Additionally, we implement the direct method, proposed by [6], for simulating the stochastic
model.

Table 1: Stochastic model.
Reaction Id Reaction Propensity of the reaction
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This model is easily adapted to a model with a non constant volume. As we are working
with number of molecules, the equations are already valid for a variable volume. However, the
conversion factor Ω will no longer be constant. Even though this seems a small change, it is not,
because Ω affects the value of several parameters.

3. Results
This section will present an analysis of the the proposed method, along with the results found
when the model is both stochastically and deterministically simulated. In an effort to stimulate
the reproducibility, the values used for each parameter of the model can be found in [7].

3.1. Stability analysis
In order to present a stable oscillatory behavior, an ODE system must have at least one limit
cycle [8]. The original model, proposed in [1], has a limit cycle. Thus, the model proposed here
must preserve this limit cycle. As our model introduces an extra parameter, an analysis of the
impact of this new parameter is presented.

The first thing one must do to perform a stability analysis is to find the stable points. These
points can be found by solving a nonlinear system which is obtained when each derivate is made
equal to zero[9]. Although the system obtained has several solutions, when the solutions are
limited to the positive Real numbers there are only two solutions P1 and P2 (Tab. 2). However,
the second point P2 is also not valid because the E2F value exceeds the maximum value allowed
of 3.0 defined by the parameter E2Ftot. So, the following analysis will only focus in the valid
point P1.
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Table 2: Equilibrium points
Cdc20 E2f Ma Mb Me Md

P1 0.1738902240 0.2448834860 0.2901560559 0.3365279086 0.08954976057 0.165495
P2 1.786431803 3.010457122 2.715508604 1.834578112 0.1783832744 0.165495

In an effort to further analyze the equilibrium point P1, a linearized version of the
system was used in its the neighborhood. In this simplified version the eigenvalues were
computed for inferring the stability of the point. These values are found in [7]. As there
are complex eigenvalues, we can conclude that the system presents an oscillatory behavior in
the neighborhood of the point P1[9].

For validating our model, we must verify the impact of the parameter µ over the equilibrium
point. To perform this analysis, the matcont[10] extension of the well-known MATLAB software
was used. The result shows that the system behavior is preserved until the critical point µ = 0.11
(Fig. 1). At this point, a Hopf bifurcation occurs, this means that a limit cycle is created or
vanished at this point [11]. Hopefully, this values is much bigger than the actual value computed
for being used µ = 0.0385.

The Figures (Fig. 2) and (Fig. 3) show the phase plane Ma × Mb for several values of
µ. However, the first one shows distinct cycles on the plane, while the second is a 3D graph
composed by phase plane Ma ×Mb and a height given by µ. These graphs evince that as µ
approaches 0.11, the limit cycle shrinks until it reaches the critical point 0.11 where it vanishes.
In fact, this evinces that the parameter µ influences the stability of the limit cycle, but it also
evinces that it only changes the system’s behavior when its value is much greater than the value
we estimate (0.0385 against 0.11).

3.2. Deterministic Simulation
The Figure 4 shows the results of simulating the original model proposed by [1], while the Figure
5 shows the results of our new model. Even though our model presents lower concentrations,
it is clear that they have a similar behavior. These lower concentrations are expected as we
introduce a factor of dilution. One may also notice that the length of the cycle is slighted
shorter, to be precise the cycle reduces from 23, 573 to 21, 816 hours, in our model. However,
this is not sufficient to invalidate our model.

3.3. Stochastic Simulation
In an effort to produce reliable results, the results are presented in terms of concentrations.
This allows a direct comparison between the stochastic version and the deterministic version.
In order to obtain the concentration C, the following operation was done C = Nm

Ω , where Nm is
the number of molecules.

The graph illustrated in Figure 6 shows the results for our new model. The volume here
varies between 0.334pL to 0.7pL (0.334pL is the average volume of human granulocytes [12]),
following the Differential Equation 7. This result is close to deterministic version, indicating
that our stochastic model is also correct.

4. Conclusion and Future Works
In this work a new mathematical model for the mammalian cell cycle was developed. This new
model takes into account not only the concentrations of some key elements, but also explicitly
models the cell volume variation. Finally, this model also has a key moment where the cell
division explicitly occurs, cutting by a half the cell volume.

Another important contribution of this work is the analysis of the impact of the new parameter
µ over the stability of the model. This analysis concludes that only high values of µ affects the
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model’s stability. As values of this magnitude are not viable from a physiological point of view,
we may conclude that parameter impact, over the stability, is very small.

As a future work, we can include the influence of a chemotherapeutic on the cell cycle model.
Among several chemotherapeutic, an interesting options is the cisplatin family, which inhibits
the DNA synthesis. Therefore, it can be included in the model affecting the phase S.

Another future can be adapting the model for representing the cell cycle of a cancer cell.
This may enhance the comprehension of which parts of the cell cycle are affected by each type
cancer, guiding the development of efficient drugs.

5. Figures

Figure 1: Diagram of bifurcation. Equilibrium value
of Mb in relation the µ value. The point H represents
the Hopf bifurcation (µ = 0.11).
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Figure 2: Phase plane Ma × Mb. Each curve
represents a distinct value of µ
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Figure 3: Graph of several phase planes Ma × Mb

with µ being the height.
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Figure 4: Complexes of cyclinA/Cdk2 (Ma),
cyclinB/Cdk1 (Mb) and cyclinE/Cdk2 (Me). De-
terministic simulation of the cell cycle with constant
volume[1].
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Figure 5: Complexes of cyclinA/Cdk2 (Ma),
cyclinB/Cdk1 (Mb) and cyclinE/Cdk2 (Me). Deter-
ministic simulation of the model proposed here.
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Figure 6: Complexes of cyclinA/Cdk2,
cyclinB/Cdk1 and cyclinE/Cdk2. Mean con-
centrations obtained by the average of 500 stochastic
simulations of the model with variable volume.
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