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Abstract. We determine active gravitational mass operator of the simplest composite
quantum body - a hydrogen atom - within the semiclassical approach to the Einstein equation
for a gravitational field. We show that the expectation value of the mass is equivalent
to energy for stationary quantum states. On the other hand, it occurs that, for quantum
superpositions of stationary states with constant expectation values of energy, the expectation
values of the gravitational mass exhibit time-dependent oscillations. This breaks the equivalence
between active gravitational mass and energy and can be observed as a macroscopic effect for a
macroscopic ensemble of coherent quantum states of the atoms. The corresponding experiment
could be the first direct observation of quantum effects in General Relativity.

1. Introduction
The notions of active and passive gravitational masses for a classical composite body are not
trivial and have been discussed in recent literature by K. Nordtvedt [1] and S. Carlip [2]. In
particular, they have stressed that gravitational field is coupled with the following combination:
3K + 2U , where K is kinetic and U is potential energies of a composite body. They have
revealed an important role of the classical virial theorem, which states that averaged over time
value of ⟨2K+U⟩t= 0 and thus guarantees that the averaged over time gravitational masses are
equivalent to the total energy,

⟨mg⟩t= m1 +m2 + ⟨3K + 2U⟩t/c
2 = m1 +m2 + ⟨K + U⟩t/c

2 = E/c2. (1)

The author of this article has very recently considered quantum case of the simplest composite
quantum body - a hydrogen atom [3-7]. He has shown that the quantum virial theorem [8] is
responsible for the fact that the expectation values of active and passive gravitational masses
of the atom are equivalent to energy for stationary quantum states. On the other hand, he
has found important breakdowns of the above-mentioned equivalence for two cases: (a) for
quantum superpositions of stationary states, (b) for stationary quantum states due to quantum
fluctuations. In Refs.[3-7], there have suggested two different idealized experiments to detect
the above-mentioned breakdowns of the Equivalence Principle [9]. If such experiments are done
they will be the first direct observations of quantum effects in General Relativity.

2. Goal
The goal of this paper is to study a quantum problem of active gravitational mass of a composite
body in semiclassical theory of gravity [10]. Below, we consider the simplest composite quantum
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body - a hydrogen atom. We obtain and discuss the following two main results. The first one is
that the expectation value of the mass is equivalent to energy for stationary quantum states due
to the quantum virial theorem [8]. The second result is the breakdown of the above mentioned
equivalence for a macroscopic coherent ensemble of quantum superpositions of stationary states.
In particular, we show that the expectation value of active gravitational mass is time dependent
value for superpositions of stationary quantum states even in the case, where the expectation
value of energy is constant. We also discuss possible experiment to discover this breakdown of
the Equivalence Principle.

3. Active gravitational mass in classical physics
In this section, we determine active gravitational mass of a hydrogen atom, provided that we
consider its classical model. More precisely, below we consider light negatively charged particle
exhibiting a bound motion in the Coulomb field of heavy positively charged particle. Our task
is to calculate contributions to the mass from kinetic and potential energies of the light particle.

Let us write gravitational potential at large distances from the atom, R ≫ rB, where rB
is the the so-called Bohr radius (i.e., effective ”size” of a hydrogen atom). In accordance with
general theory of a weak gravitational field [9,11], the gravitational potential can be written as

ϕ(R, t) = −G
me +mp

R
−G

∫
∆T kin

αα (t, r) + ∆T pot
αα (t, r)

c2R
d3r, (2)

where ∆T kin
αβ (t, r) and ∆T pot

αβ (t, r) are contributions to stress-energy tensor density, Tαβ(t, r),
due to kinetic and the Coulomb potential energies, respectively, me and mp are electron and
proton bare masses. We point out that in Eq.(2) we disregard all retardation effects. Therefore,
in the above-mentioned approximation, electron active gravitational mass is equal to

mg
a = me +

1

c2

∫
[∆T kin

αα (t, r) + ∆T pot
αα (t, r)]d3r. (3)

To evaluate ∆T kin
αα (t, r), we make use of the standard expression for stress-energy tensor

density of a moving relativistic point mass [9,11]:

Tαβ(r, t) =
mev

α(t)vβ(t)√
1− v2(t)/c2

δ3[r− re(t)], (4)

where vα is a four-velocity and re is three dimensional electron trajectory. As directly follows
from Eq.(4),

∆T kin
αα (t) =

∫
∆T kin

αα (t, r)d3r =
me[c

2 + v2(t)]√
1− v2(t)/c2

−mec
2. (5)

Calculation of the contribution from potential energy to stress energy tensor is done by using
the standard formula for stress energy tensor of electromagnetic field [11],

Tµν
em =

1

4π
[FµαF ν

α − 1

4
ηµνFαβF

αβ ], (6)

where ηαβ is the Minkowski metric, Fαβ is the so-called tensor of electromagnetic field [11].
Below, we use approximation, where we disregard magnetic field and take into account only
the Coulomb electrostatic field. In this case, we can simplify Eq.(6) and obtain the following
expression:

∆T pot
αα (t) =

∫
∆T pot

αα (t, r)d3r = −2
e2

r(t)
. (7)
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As follows from Eqs.(5),(7), active electron gravitational mass can be written in the following
way

mg
a =

[
mec

2

(1− v2/c2)1/2
− e2

r

]
/c2 +

[
mev

2

(1− v2/c2)1/2
− e2

r

]
/c2. (8)

We note that the first term in Eq.(8) is the expected total energy contribution to the mass,
whereas the second term is the so-called relativistic virial one [8,12], which depends on time.
Therefore, in classical physics, active gravitational mass depends on time too. Nevertheless, it
is possible to introduce electron active gravitational mass averaged over time. This procedure
restores the expected equivalence between active gravitational mass and energy:

mg
a =

⟨
mec

2

(1− v2/c2)1/2
− e2

r

⟩
t
/c2 +

⟨
mev

2

(1− v2/c2)1/2
− e2

r

⟩
t
/c2 = me +E/c2, (9)

where the averaged over time virial term is zero due to the classical virial theorem. Note that
for non-relativistic particle our Eqs.(8),(9) can be reduced to the results of Refs.[1,2]:

mg
a = me +

[
mev

2

2
− e2

r

]
/c2 +

[
2
mev

2

2
− e2

r

]
/c2 (10)

and

< mg
a >t= me +

⟨
mev

2

2
− e2

r

⟩
t
/c2 +

⟨
2
mev

2

2
− e2

r

⟩
t
/c2 = me + E/c2. (11)

4. Gravitational mass in quantum physics
In this section, we make use of semiclassical theory of gravity [10], where gravitational field is
not quantized but the matter is quantized in the Einstein equation:

Rµν −
1

2
Rgµν =

8πG

c4
⟨T̂µν⟩, (12)

where < T̂µν > stands for the expectation value of quantum operator, corresponding to the
stress energy tensor. To this end, we need to rewrite Eq.(10) for electron active gravitational
mass using momentum, instead of velocity, and then quantize it:

m̂g
a = me +

(
p̂2

2me
− e2

r

)
/c2 +

(
2
p̂2

2me
− e2

r

)
/c2. (13)

As follows from Eq.(13), the expectation value of electron active gravitational mass can be
expressed as

< m̂g
a >= me +

⟨
p̂2

2me
− e2

r

⟩
/c2 +

⟨
2
p̂2

2me
− e2

r

⟩
/c2, (14)

where third term is the virial one. Let us consider a macroscopic ensemble of hydrogen atoms
with each of them being in ground state. In this case, the expectation value of the mass is

< m̂g
a >= me +

E1

c2
, (15)

where the expectation value of the virial term in Eq.(14) is equal to zero in stationary quantum
states due to the quantum virial theorem [8]. Thus, we make conclusion that, in stationary
quantum states, active gravitational mass of a composite quantum body is equivalent to its
energy.
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Here, we consider the simplest quantum superposition of stationary states in a hydrogen
atom,

Ψ(r, t) =
1√
2
[Ψ1(r) exp(−iE1t) + Ψ2(r) exp(−iE2t)], (16)

where Ψ1(r) and Ψ2(r) are the ground state (1S) and first excited state (2S), respectively.
As directly follows from (16), the superposition is characterized by the following constant
expectation value of energy:

< E >= (E1 + E2)/2. (17)

Nevertheless, as it follows from (14) the expectation value of electron active mass operator
oscillates with time:

< m̂g
a >= me +

E1 + E2

2c2
+

V1,2

c2
cos

[
(E1 − E2)t

h̄

]
, (18)

where V1,2 is matrix element of the virial operator between the above-mentioned two stationary
quantum states. Note that these time dependent oscillations directly demonstrate inequivalence
between the expectation values of active gravitational mass and energy for superpositions of
stationary quantum states. We stress that such quantum mechanical oscillations are very
general and are not restricted by a hydrogen atom. To simplify the situation, in the same
way as in the previous section, we can introduce the averaged over time expectation value of
active gravitational mass, which obeys the Einstein’s equation:

<< m̂g
a >>t= me +

E1 +E2

2c2
=

⟨
E

c2

⟩
. (19)

5. Suggested experiment
In this short section, we discuss in brief an idealized experiment, which, in principle, allows to
observe oscillations of the expectation value of active gravitational mass (18). By using laser,
it is possible to create a macroscopic ensemble of coherent superpositions of electron stationary
states in some gas. It is important that they are characterized by a feature that each molecule
has the same phase difference between two wave function components, Ψ̃1(r) and Ψ̃2(r). In this
case, the ensemble of atoms generates gravitational field, which oscillates in time (18).
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